
PSM~-thirottling: Mnimizing Energy onsu tion

for Bulk ata Co mnunications in A s

Enhua Tani1, Lei Guo1, Songqing Chen2, and Xiaodong Zhang1

'Dept. of Computer Science and Engineering 2Dept. of Computer Science

The Ohio State University George Mason University
Columbus, OH 43210, USA Fairfax, VA 22030, USA

etan, Iguo, zhang} @cse.ohio-state.edu sqchen@cs.gmu.edu

Abstract- While the 802.11 power saving mode (PSM) and
its enhancements can reduce power consumption by putting
the wireless network interface (WNI) into sleep as much as
possible, they either require additional infrastructure support, or
may degrade the transmission throughput and cause additional
transmission delay. These schemes are not suitable for long
and bulk data transmissions with strict QoS requirements on
wireless devices. With increasingly abundant bandwidth available
on the Internet, we have observed that TCP congestion control is
often not a constraint of bulk data transmissions as bandwidth
throttling is widely used in practice.

In this paper, instead of further manipulating the trade-off
between the power saving and the incurred delay, we effectively
explore the power saving potential by considering the bandwidth
throttling on streaming/downloading servers. We propose an
application-independent protocol, called PSM-throttling. With
a quick detection on the TCP flow throughput, a client can
identify bandwidth throttling connections with a low cost. Since
the throttling enables us to reshape the TCP traffic into periodic
bursts with the same average throughput as the server transmis-
sion rate, the client can accurately predict the arriving time of
packets and turn on/off the WNI accordingly. PSM-throttling
can minimize power consumption on TCP-based bulk traffic
by effectively utilizing available Internet bandwidth without
degrading the application's performance perceived by the user.
Furthermore, PSM-throttling is client-centric, and does not need
any additional infrastructure support. Our lab-environment and
Internet-based evaluation results show that PSM-throttling can
effectively improve energy savings (by up to 75%) and/or the QoS
for a broad types of TCP-based applications, including streaming,
pseudo streaming, and large file downloading, over existing PSM-
like methods.

I. INTRODUCTION

The Internet has been dramatically advanced and signifi-
cantly changed in two aspects. First, wireless Internet accesses
become pervasive with the widely deployed WiFi networks
on university campus, in business enterprises, public utilities,
and residential houses. Second, media content has accounted
for a high percentage of the Internet traffic volume. Under
these two trends, more and more people are accessing Internet
media services via wireless connections, on both mobile or
portable devices such as laptops, PDAs, BlueTooth devices,
and stationary desktop computers.

Mobile and portable devices are usually driven by battery

power. Due to the limited battery capacity, it is essential
to reduce power consumption on mobile devices without
degrading the performance of applications, particularly for
those applications that are QoS sensitive. The basic power
saving method is to put the wireless network interface (WNI)
into the sleep mode when it is idle, e.g., IEEE 802.11 power
saving mechanism [10]. However, 802.11 power saving mode
(PSM) may increase the connection round trip time due to the
lagged data reception, and thus may significantly degrade the
throughput of TCP-based applications. In order to achieve a
high TCP throughput, the WNI has to be active to generate
timely acknowledgments for received data. As a result, a
significant amount of energy is wasted on channel listening [7],
[9]. For applications like TCP-based streaming media, which
has strict requirements on packet delay and can quickly drain
out the battery of mobile devices, it is difficult to explore the
trade-offs between the power saving and the caused delay to
applications.
The power saving mode can be most effectively managed

if the streaming traffic flowing to a client is in a predicable
pattern, such as periodic bursts. Accordingly, the client can
accurately adapt to streaming traffic pattern to sleep and
to work periodically. Therefore, the power consumption on
the client device is minimized while the demanded high
throughput is also maintained. Efforts have been made towards
this goal. However, existing solutions are either expensive or
inefficient. For example, a proxy-based solution [5] is pro-
posed to buffer and shape streaming media traffic into blocks,
so that the data packets arrive at the client side with predictable
intervals. Although clients can transit to lower power states
during the block intervals without degrading application level
performance, this solution needs a dedicated infrastructure
support and is protocol dependent. Furthermore, RTSP-based
Windows, RealNetworks, and QuickTime streaming services
have their own extensions on the standard RTSP protocols [8],
which have to be implemented individually for a general
purpose RTSP proxy.
A client-centric scheme [13] is proposed to reshape the TCP

traffic into bursts, and put the WNI into sleep between two
bursts by modifying the client TCP stack. Besides lacking
specific consideration for the streaming traffic, this scheme

1-4244-1588-8/07/$25.00 ©2007 IEEE12 123

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on November 13, 2008 at 16:28 from IEEE Xplore. Restrictions apply.

increases the data transmission time as a trade-off, which
can be a high cost for some bulk data transmissions and
unacceptable for streaming media applications with stringent
QoS demands.

Streaming, pseudo streaming, and file downloading are
the most commonly used media delivery approaches on the
Internet today [8]. These techniques typically use TCP as the
transmission protocol. With the increasingly abundant Internet
bandwidth, the transmission rate of media traffic is often not
constrained by the TCP congestion control mechanism on the
network, but by the control on the server side, which we
refer to as bandwidth throttling, due to an increasingly high
demand of server resources. With bandwidth throttling, the
Internet transmission is constrained by the server side instead
of the available Internet bandwidth. That is, there may be idle
Internet bandwidthi without full utilization. Our observations
show that bandwidth throttling has been commonly adopted in
practice in a large variety of TCP-based bulk data transmission
applications, in which media services are the most typical.

In this paper, we aim to take this unique opportunity
offered by bandwidth throttling to exploit unused Internet
bandwidth for power saving at the client side in WLANs.
We propose an application-independent PSM protocol, called
PSM-throttling, to significantly improve the power saving
efficiency for bulk data communication applications with
stringent QoS requirements. In PSM-throttling, with a quick
detection of the TCP flow throughput, a client can identify
bandwidth throttling connections with a low cost. Since the
effective data transmission rate is often much lower than the
available Internet bandwidth due to bandwidth throttling at
the server side, the unused network bandwidth enables us
to reshape the traffic into periodic bursts with an average
throughput the same as the server transmission rate. With such
periodic burst transmission patterns, idle and busy phases on
the network transmissions can be clearly distinguished. Thus
packet arrivals can be accurately predicted at the client side.
As a result, the WNI can be turned on and off at the right time,
in order to minimize energy consumption without degrading
the user-perceived performance. The protocol can also detect
dynamic changes of the server transmission rate in time with
a small cost by tuning the burst size and burst intervals to
maximize client perceived throughput and minimize energy
consumption. Since PSM-throttling works at the transmission
layer on the client and does not affect server transmission rate,
it is application independent and client-centric.

Our Internet-based evaluation results show that PSM-
throttling can effectively improve energy savings by up to 75%
on the WNI or the QoS for a broad types of TCP-based bulk
communications, including streaming, pseudo streaming, and
large file downloading, than other power saving schemes.
The remainder of this paper is organized as follows. Section

II presents our observations and measurements on typical bulk
data transmission applications on the Internet and lab environ-
ments. We present PSM-throttling system designs in Section

Application

socket interface

layer data size+

TCP ~~~~streaming

soze ~~~~pseudo streaming

Fig. 1. Bandwidth throttling in streaming servers and Web servers

III. Based on an implemented prototype, we evaluate PSM-
throttling with real experiments on the Internet environments
and lab environments in Section IV. Section V outlines the
related work on power saving in WLANs. Concluding remarks
are made in Section VI.

II. BANDWIDTH THROTTLING IN TCP-BASED MEDIA
TRANSMISSIONS

In this section, we characterize the performance of rep-
resentative bandwidth throttling applications through Internet
measurements, in order to explore the power saving space
for TCP-based long duration and bulk data transmissions. We
focus on the TCP-based Internet media delivery since media
content is prevailing in online services and accounts for the
majority of the Internet traffic [8].

Current Internet media traffic is mainly delivered via stream-
ing, pseudo streaming, and file downloading techniques, where
the bandwidth throttling is commonly used in practice.

Streaming: Although traditionally UDP is the ideal pro-
tocol for streaming delivery, today TCP-based streaming
accounts for more than 80% of the Internet streaming traf-
fic, due to the wide deployment of NAT routers/firewalls
and the overhead of protocol rollover [8].
For streaming services, typically each stream is delivered
at its encoding rate, even if there is more bandwidth
available between the client and the server. Although Fast
Cache [2] based streaming can deliver a media object
with a rate up to five times of its encoding rate, it is
not resource efficient and is disabled by most media
services in practice [8]. Furthermore, with the increas-
ing popularity of streaming services, a streaming server
may need to serve hundreds or thousands of concurrent
requests at the same time. Delivering a media object
with a much higher rate than its encoding rate would
significantly decrease the number of concurrent requests
a server can service, and the user-perceived performance
will be degraded when a burst of requests arrive.

124

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on November 13, 2008 at 16:28 from IEEE Xplore. Restrictions apply.

*Pseudo Streaming and Downloading: Besides stream-
ing services, many content providers and Internet media
services, such as YouTube and Google video, leverage
pseudo streaming techniques to deliver media content
with common Web servers [6]. The transmission in
pseudo streaming is essentially normal HTTP download-
ing. However, the client player can play the received data
when a small playout buffer is fulfilled, without waiting
for the complete downloading of the entire media.
In order to serve a large number of concurrent requests,
typically a pseudo streaming server has to limit the maxi-
mal throughput of each TCP downloading session, which
is often much smaller than the end-to-end bandwidth
between the server and its clients on the Internet.

Figure 1 illustrates the bandwidth throttling on either a
streaming server or a Web server. 'The bandwidth throttling
by a streaming server is often conducted in a fine granularity,
so that the outgoing packets are evenly distributed in the
stream. In contrast, the bandwidth throttling by a Web server
is often conducted in a coarse granularity, and the outgoing
packets may be sent with a bursty stream. Next, we present our
Internet measurements to further understand the implications
of bandwidth throttling on power saving.

First, we studied the widely used streaming services on
the Internet, including RealNetworks media streaming and
Window media streaming. All servers in our measurements,
including Window media servers and RealNetworks media
servers, are hosted by a CDN. For TCP-based RealNetworks
media streaming, the server sends media packets with regular
packet intervals. In order to test whether it is bandwidth-
throttling or not (i.e., whether there is any unused bandwidth
between the client and the server), we suppress the media
transmission by setting the receiving window of TCP ACK to
zero for 200 milliseconds at the client side, and then restore the
original receiving window size to let the server send the data
buffered in thie TCP congestion queue. When thie first packet
is received, we choke the connection by sending a TCP ACK
with zero receiving window size for 200 milliseconds again.
Figure 2(a) shows the original data transmission sequence,
while Figure 2(b) shows the sequences after our periodical
choking. It shows that the TCP traffic becomes bursty, while
the overall throughput keeps unchanged. The reason is as
follows. As shown in Figure 1, when the TCP connection
is choked by the client, the TCP layer at the server side
cannot send more data. However, at the application layer, the
streaming server continues to send data to the TCP layer,
until the TCP congestion window is full. As a result, once
the connection is unchoked, the TCP layer at the server side
sends all data in the congestion window immediately. Since
the average sending rate of the streaming server, i.e., the
streaming rate. which is equal to the media encoding rate
by default, is much smaller than the end-to-end bandwidth
between the client and the server, when the buffered data is
sent, no more data can be filled in the TCP congestion window
in time, resulting the traffic bursts. For TCP-based Windows

media streaming, we have similar observations, as shown in
Figure 3(a) and Figure 3(b).

Second, we study the Internet pseudo streaming from
YouTube. Figure 4 shows the time sequences of typical TCP
connections of pseudo streaming media served by YouTube
servers. Figure 4(a) shows the sequence without our inter-
ferences. The figure indicates that the traffic of YouTube is
already bursty, due to the coarse granularity scheduling of
packet sending for each connection.

Although the traffic bursts in pseudo streaming provide
potentials to save energy by scheduling the on and off of the
WNI, such bursts are not periodic and it is difficult for the
client to predict the arriving time and finishing time of a burst.
However, with a synchronized choking and unchoking on the
client side, it is possible to predict packet arrivals in a high
accuracy. Figure 4(b) shows the situation after our periodic
choking is applied with a period of 200 milliseconds. The
figure shows that both the burst length and the interval are
approximately periodic with our choking scheme. Thus, the
client can sleep and wake up at the right time and the energy
consumption on the WNI can be minimized.

Although the above experiments confirm that bandwidth
throttling is common in the Internet applications and it could
be leveraged to save more power at the client side by choking
and unchoking corresponding TCP flows, inappropriately flow
choking may lead to unacceptable penalty. Figure 5(a) shows
the time-sequence of a typical TCP connection for HTTP
downloading served by a Apache Web server. Figure 5(b)
shows the corresponding result after the traffic is shaped by
periodic choking and unchoking. As shown in Figure 5(b),
although the reshaped traffic becomes bursty and more energy
could be saved, the TCP throughput is actually reduced. The
reason is that in this case, the server does not use bandwidth
throttling to limit the transmitting rate at the application layer.
Choking the connection will cause the server to pause the data
transmitting, but the TCP transmitting rate cannot be increased
after unchoking, and the overall throughput is decreased.
Therefore, choking and unchoking must be carefully used to
reshape the traffic. Unless bandwidth throttling is detected,
traffic reshaping via choking/unchoking is not encouraged.

Besides Internet experiments, we have also conducted ex-
periments on Windows media server, RealNetworks media
server, and Apache Web server in the lab by simulating the
Internet environment with NIST Net emulator '. All the ex-
perimental results are consistent and confirm our observations.

III. PSM-THROTTLING PROTOCOL DESIGN

Our study in the last section shows that 1) bandwidth
throttling commonly exists in various Internet applications,
which implies that there are great potentials for further power
savings on the WNI at the client side, and 2) the simple

'http://www-x.antd.nist.gov/nistnet/

125

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on November 13, 2008 at 16:28 from IEEE Xplore. Restrictions apply.

(a) Bandwidth throttling without reshaping(bBadittholngwhreapg

Fig. 2. Time-sequence graph of TCP-based streaming media by RealNetworks media server

II
.11I

I

III
II'

-v I

(a) Bandwidth throttling without reshaping (b) Bandwidth throttling with reshaping

Fig. 3. Time-sequence graph of TCP-based streaming media by Windows media server

,11

I/
.1'

III

(a) Bandwidth throttling without reshaping (b) Bandwidth throttling with reshaping

Fig. 4. Time-sequence graph of YouTube streaming

choking and unchoking scheme to reshape the traffic may

affect the performance of the running application. Therefore, to

explore this power saving space, first, the bandwidth-throttling
must be correctly detected in time. Second, the client must be

able to predict the packet arrivals accurately so that the WNI

can be turned on and off at the right time.

Aiming to achieve maximal power savings without de-

grading application level performance, in this section, we

propose PSM-throttling, an efficient power saving mechanism

for TCP-based bulk data communications. After presenting our

detection algorithm, we will present our two level traffic burst

generation algorithm. Lastly, we discuss how our proposed
protocol promptly adapts to the fluctuations of the server

transmission rate and network transmission rate.

A. Bandwidth Throttling Detection

In the experiments presented in Section II, we have shown

that the traffic of pseudo streaming from YouTube is already
bursty, for which bandwidth throttling is easy to be identified.

However, other applications, such as TCP-based streaming

126

II

-1

(b) Bandwidth throttling with reshaping

i
Ili

I
. I'

I

II
I i

III

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on November 13, 2008 at 16:28 from IEEE Xplore. Restrictions apply.

