Network-based and Attack-resilient Length Signature
Generation for Zero-day Polymorphic Worms

Zhichun Li, Lanjia Wangt, Yan Chen and Zhi (Judy) Fuf
Northwestern University, Evanston, IL, USA
$Tsinghua University, Beijing, China
{Motorola Labs, Schaumburg IL, USA

Abstract—It is crucial to detect zero-day polymorphic worms
and to generate signatures at the edge network gateways or hon-
evnets so that we can prevent the worms from propagating at their
early phase. However, most existing network-based signatures
generated are net vulnerability-based and can be easily evaded by
attacks. In this paper, we propose generating vulnerability-based
signatures on the network level without any hest-level analysis
of werm execution or vulnerable pregrams. As the first step,
we design a network-based Length-based Signature Generator
(LESG) for worms based on buffer overflow vulnerabilities'.
The signatures generated are intrinsic te buffer overflows, and
are very hard for attackers to evade. We further prove the
attack resilience bounds even under worst case attacks with
deliberate noise injection. Moreover, LESG is fast and noise-
tolerant and has efficient signature matching. Evaluation based on
real-world vulnerabilities of varicus protocels and real network
traffic demonstrates that LESG is promising in achieving these
goals.

[. INTRODUCTION

Computer worms are serious threats to the Internet caus-
ing billiens of dollars in econcmic loss. Recently, zere-day
worm attacks that exploit unknown vulnerabilities have become
popular [2]. Intrusion detection/prevention systems (IDSes) [3],
[4] are proposed to defend against malicious worm attacks by
searching the network traffic for known patterns, or signatures.
Such signatures for the [DSes are currently generated manually
or semi-manually, a process (oo slow to defend against self-
propagating compufer worms.

Thus it is critical to automate the process of worm de-
tection, signature generation and signature dispersion in the
early phase of worm propagation, especially at the network
level (gateways and routers). There is some existing work
towards this direction [5]-[7]. However, te evade detection by
signatures generated with these schemes, attackers can employ
polymorphic worms which change their byte sequence at every
successive infection. Recently, some polymorphic worm signa-
ture generation schemes are proposed. Based on characteristics
of the generated signatures, they can be broadly classified
info two categories — vulnerability-based and exploit-based.
The former signature is inherent to the vulnerability that the
worm fries to exploit. Thus it is independent of the worm
implementation, unique and hard to evade, while exploit-based
signatures capture certain characteristics of a specific worm
implementation. However, schemes of both categories have
their limitations.

Existing vulnerability-based signature generation
schemes are host-based and cannot work at the network
router/gateway level. These schemes [8§]-[10] either require
exploit code execution or the source/binary code of the

ITt is reported that mere than 75% of vulnerabilities are based on buffer
overflow [1].

1-4244-1588-8/07/$25.00 ©2007 IEEE

164

vulnerable program for analysis. However, such host-level
schemes are too slow to counteract the worms that can
propagate at exponential speed. Given the rapid growth of
network bandwidth, today’s viruses/worms can propagate
quickly and infect most of the vulnerable machines on
the Internet within ten minutes [11] or even less than 30
seconds with some highly virulent techniques [12], [13]
at near-exponential propagation speed. At the early stage
of worm propagation, only a very limited number of worm
samples are active on the Internet, and the number of machines
comproemised is also limited. Therefore, signature generation
systems should be network-based and deployed at high-speed
border routers or gateways where the majority of traffic can be
observed. Such a requirement for network-based deployment
severely limits the design space for defection and signature
generation as discussed in Section II.

Existing exploit-based schemes are less accurate and can
be evaded. Some of these schemes are network-based and are
much faster than those in the former category. However, most
of such schemes are content-based, which aim te expleit the
residual similarity in the byte sequences of different instances
of polymorphic worms [14]-[18]. As mentioned in [18], there
can be some worms which do not have any content-based sig-
nature at all. Furthermore, various attacks have been proposed
to evade the content-based signatures [19]-[22]. The rest of the
schemes in this category [23], [24] generate signatures based
on exploit code structure analysis, which is not inherent to the
vulnerability exploited and can also be evaded [19].

Therefore, our goal is to design a signature generation system
which has both the accuracy of vulnerability-based schemes
and the speed of exploit-based schemes so that we can deploy
it at the network level to thwart zero-day polymorphic worm
attacks. As the first step towards this ambitious goal, we
propose LEngth-based Signature Generator {called LESG)
which is a network-based approach for generating efficient and
length-based signatures which cannot be evaded. That is, even
when the attacker knows what the signatures are and how the
signatures are generated, they still cannoct find an efficient and
effective way to evade the signatures.

Length-based signatures target buffer overflow attacks which
constitute the majority of attacks [1]. The key idea is that in
order to exploit any buffer overflow vulnerabilities, the length
of cerfain protocol fields must be leng enough to overflow
the buffer. A buffer overflow vulnerability happens when there
is a vulnerable buffer in the server implementation and some
part of the protocol messages can be mapped to the vulnerable
buffer. When an attacker injects an overrun string input for the
particular field of the protocol to trigger the buffer overflow,
the length of such an input for that field is usually much longer

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on November 13, 2008 at 16:26 from IEEE Xplore. Restrictions apply.

than those of the normal requests. Thus we can use the field
input length to detect attacks. This is infrinsic to the buffer
overflow, and thus it is very hard for worm authors to evade.

In addition to being network-based and having high accuracy,
LESG has the following important features.

Noise tolerance. Signature generaticon systems typically need
a flow classifier to separate potential worm traffic from not-
mal traffic. However, network-level flow classification tech-
niques [7], [25]-[28] invariably suffer from false positives that
lead to noise in the worm traffic peol. Neise is alse an issue for
heneynet sensors [3], [16], [23]. Fer example, attackers may
send some legitimate traffic to a heneynet sensor to pollute
the worm ftraffic pool and te evade neise-intolerant signature
generation. Our LESG is proved (¢ be noise (olerant or even
better, attack resilient, Le., LESG works well with maliciously
injected noise in an attempt to mislead NIDS [19].

Efficient Signature Matching. Many users patch their sys-
tems slowly due to the fact that they may have to restart the
applicaticns or reboot the machines. [t is more efficient and
effective to deploy signatures at the NIDS/firewall to filter
out the malicious traffic of an enfire enterprise network. Since
the signatures generated are to be matched against every flow
encountered by the NIDS/firewall, it is critical to have fast
signature matching algorithms.In the LESG system, the length-
based signatures can be matched at the network level with a
protocol length parser without any host-level analysis.

In the rest of the paper, we first survey related work in
Section II and discuss the LESG architecture in Section III.
Then we present the length-based signature generation problem
in Section IV, generation algorithm in Section V, and its attack
resilience in Section VI. After that, in Section VII, we use
real Internet traffic and seven real expleit code {(enhanced
with polymorphic capabilities) on five different protocels to
test the performance of LESG prototype. Results show that
LESG is highly accurate, noise telerant, capable of detecting
multiple worms in the same protecel peel, and capable of
online signature generation with small memory consumption.
Finally, we discuss scme practical issues in Section VIII and
cenclude in Sectien X.

I[I. RELATED WORK

. Signature generation mechanisms
Property of signatures Network-based Host-based
Exploit-based Polygraph [15], | DACODA L8],
Hamsa [14], | Taint check [17]
PADS [16],
Nemean [23],
CEG [24]
Vulnerability-based Vulnerability
LESG signature [10],
Vigilante [28],
COVERS [8],
Packet Vaccine [9]
TABLE I
COMPARISON WITH CTHER POLY MORPHIC WORM SIGNATURE GENERATION
SCHEMES.

Early automated worm signature generation efforts include
Honeycomb [5], Autograph [7], and EarlyBird [6], but they do
not work well with polymorphic worms.

Existing work on automated polymorphic worm signature
generafion can be broadly classified into vulnerability-based
and exploit-based. Based con signature generation input require-
ments, we can further categorize these schemes on another axis:

165

host-based vs. network-based. The former requires either ex-
ploit code execution or the scurce/binary code of the vulnerable
program . On the other hand, the network based approaches rely
solely on network-level packets. The classification of existing
schemes and LESG is shown in Table I.

Exploit-based schemes. We have discussed most of them in
the introduction [14]-[18], [23], [24]. For example, Christopher
er alproposes using the structural similarity of the Control
Flow Graph {(CFG) (o generate a fingerprint as signatures [24].
However, their approach can be evaded when the worm body
is encrypted. Furthermore, compared with length-based signa-
tures, it is much more computationally expensive to match the
fingerprint with the network packets. Thus it cannot be applied
to filter worm traffic at high-speed links.

In comparison with most recent work in this category, such
as Hamsa [14], LESG has better attack resilience, e.g., it has
better bounds for deliberate noise injection attacks [19].

Vulnerability-based and host-based schemes. Brumley e
al.presents the concept of a vulnerability signature in [10] and
argues that the best vulnerability signatures are Turing machine
signatures. However, since the signature matching for Turing
machine signatures is undecidable in general, they reduce the
signatures to symbolic constraint signatures or regular expres-
sion signatures. Their approach is a heavyweight host-based
approach, which has high computational overhead and alse
needs some information such as the vulnerable program, multi-
ple execuftion traces, and the vulnerability condition. Similarly,
Vigilante [29] proposed a vulnerability-based signature which
is similar to the MEP symbolic constraint signatures in [10].

Liang ef al.proposed the first host-based scheme o generate
length-based signatures [1], [8]. Packet Vaccine [9] further
improves the signature quality by using binary search. Un-
fortunately, both of them are host-based approaches and are
subject to the limitations mentioned before and some additional
shortcomings. First, they need (o know the vulnerable prograrm.
Sometimes, they have to try many different implementation
versions to find the vulnerable ones. Second, the signature gen-
erated by [8] based cn a small number of samples may be too
specific to represent the overall worm population. Therefore,
detection based cn their generated signatures tends to have high
false negatives. Moreover, the pretocol specification language
they used is not expressive enough for many protocols.

Other related work. There are previocus research efforts on
network-level detection of buffer overflow exploits. However,
they do not generate any effective signatures due to high
matching overhead and high false positives. TCTP [30] detects
buffer overflow attacks by recognizing jump targets within the
sessions. Approaches like SigFree [31] detect exploit codes
based on control flow and data flow analysis.

III. ARCHITECTURE OF LESG

As shown in Figure 1, LESG can be connected to multiple
networking devices, such as routers, switches and gateways via
a span {mirror) port or an optical splitter. Most modern switches
are equipped with a span port to which copies of enfire packets
in the traffic from a list of ports can be directed. In addition,
LESG can also be used te monitor traffic for a large-scale
honeynet/honeyfarm by sniffing traffic at its gateways. The hon-
eynet/honeyfarm can be either centralized or distributed [32]—
[34].

Similar to the basic framework of Polygraph [15] and

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on November 13, 2008 at 16:26 from IEEE Xplore. Restrictions apply.

Hamsa [14], we first need to sniff traffic from networks and
classify the traffic as different application level protocoels.
Next, we filter out known worms and then further separate
the traffic inte a suspicicus traffic pool and a normal traffic
reservoir using an existing flow classifier [7], [25]-[28].
Similar to Polygraph [15] and Hamsa [14], we use an existing
flow classifier that may use varicus techniques (such as hon-
eynet/honeyfarm [32]-[34], port scan detection [7], [33], byte
frequency detection [26], [27], and other advanced techniques)
to identify suspicious flows. Note that the flow classifiers can
operate at the line speed of routers as achieved in cur previous
work [35]. The scan detection based flow classifiers first
detect the hosts scanning a particular pert number and then
classify successful TCP connections from any of the scanning
hosts with that particular destination port number as suspicious
flows. It is effective against any scanning worm. Meanwhile,
the honeynet/honeyfarm based approach considers any traffic
caught in the honeynet/honeyfarm as suspicious flows.
Leveraging the normal traffic selection policy mentioned
in [14], we can create the normal pocl. The suspicicus pool
and the normal pool are inputted (o the signature generator as
shown in Figure 2. We first specify the protecel semantics and
use a protocol parser to parse each protocol message into a set
of fields. Each field is associated with a length and a type. The
field length information of both the suspicicus pool and the
normal pool are given as input to the “LESG core”{signature
generation algorithm} module to generate the signatures.

A. Protocol Parsing

As emphasized in [36], protocol parsing is an important step
in any semantic analysis of network traffic, such as network
monitoring, network intrusion detection systems [3], [4], smart
firewalls, efc.. We analyzed three text-based protocels (HTTP,
FTP, and SMTP} and seven binary protecels (DNS, SNMP,
SMB, WINRPC, SUNRPC, NTF, SSL). We find that, in gen-
eral, it is much easier and faster to parse the lengths of the
protocol fields than full protocol parsing.

Some recent research, such as BINPAC [36], has studied
how to ease the job of writing a protocol parser. BINPAC
is a yacc-like tool for writing application protocol parsers. [t
has a declarative language and compiler, and actually works
as a parser generator. [ts input is a script which is actually
a protocol specification written in BINPAC language. The
oufput is a parser code for that pretocel. Currently, BINPAC is
executed in connection with Bro [4], which implements cther
necessary traffic analysis at lower levels. With BINPAC, writing
a protocol parser has been greatly simplified. Furthermore, not
only can the available scripts provided by Bro be reused, but
also many people can potentially contribuie and preduce more
reusable protecol specifications for BINPAC as an open source

tool. Because of these advantages, we use BINPAC and Bre for
packet flow reassembling and protocol parsing in our research.

[V. LENGTH-BASED SIGNATURE DEFRINITION AND
PROBLEM STATEMENT

In this section, we model each application message as a field
hierarchy, and present it as a vector of fields. Based on this
model, we formally define the length-based signatures and the
length-based signature generation problem.

A. Field Hierarchies

Each of the applicaticn sessicns (flows)} usually contains cne
or more Protocol Data Units (PDUs), which are the atomic
processing data units that the application sends from one end-
point to the other endpoint. PDUs are normally specified in
the protocol standards/specifications, such as RFCs. A PDU
is a sequence of bytes and can be dissected into multiple
fields. Here, a field means a sub-sequence of bytes with special
semantic meaning or functionality as specified in the protocol
standard. Typically, a field encodes a variable with a certain
data structure, such as a string, an array efc.. Take the DNS
protecel as an example. Figure 3 shows the format of the DNS
PDUs. It has a header and four other sections — QUESTION,
ANSWER, AUTHORITY and ADDITIONAL. Each section is
further composed of a set of fields. The QUESTION section
contains one or more DNS queries that are further composed
of field class QNAME, QTYPE and QCLASS. The cther three
sections contain one or more Resource Records (RRs), and each
RR is composed of six lower level fields (NAME, TYPE, efc.).
Borrowing ferms from the object model, we call the type of
fields, such as QNAME and QTYPE, the field class, and each
concrete instance of a certain field an instance of the field.

Among all the field classes in PDUs, some, e.g., QNAME,
NAME and RDATA, are variable-length fields; others are fixed-
length fields, in which the instances all have the same length
as defined in the protocol standard.

We make the following (wo observations on such a rep-
resentation of PDU. First, the number of instances of cne
field class in a PDU may vary. For example, ocne PDU may
contain one instance of field A, and another PDU may contain
two. Second, in certain server implementations, it is possible
that the concatenation of multiple field instances (of the same
field class or not) are stored in one buffer. That is, if the
server has an overflow vulnerability related to this buffer, it
is the concatenation of several field instances that can overflow
the buffer. For example, imagine a DNS server receives a
DNS PDU and stores the entire PDU in a vulnerable buffer.
What overflows the buffer is the concatenation of all the field
instances. These two observations have been further validated
on other protecels such as SNMP and WINRPC.

With these considerations, we design a hierarchical model
to describe the possible field classes in a PDU. As Figure 5
shows, we denote the QUESTION section as a new field O,
a concatenation of all the instances of field 4 and B?, O =
{AB)*. In short, we include all possible variable-length fields
that potentially correspond to vulnerable buffers. We build such
a hierarchy for every flow.

In the rest of the paper, we refer to variable-length fields
simply as fields for the sake of brevity. Suppose there is a total
of K classes of fields in the hierarchy constructed for a certain

2we denote the variable-length field QNAME as A, and the concatenation
of fixed-length field QTYPE and QCLASS as B.

166

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on November 13, 2008 at 16:26 from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on November 13, 2008 at 16:26 from IEEE Xplore. Restrictions apply.

