
Network-based and Attack-resilient Length Signature
Generation for Zero-day Polymorphic Worms

Zhichun Li, Lanjia Wangt, Yan Chen and Zhi (Judy) Fut
Northwestern University, Evanston, IL, USA

tTsinghua University, Beijing, China
tMotorola Labs, Schaumburg IL, USA

Abstract-It is crucial to detect zero-day polymorphic worms
and to generate signatures at the edge network gateways or hon-
eynets so that we can prevent the worms from propagating at their
early phase. However, most existing network-based signatures
generated are not vulnerability-based and can be easily evaded by
attacks. In this paper, we propose generating vulnerability-based
signatures on the network level without any host-level analysis
of worm execution or vulnerable programs. As the first step,
we design a network-based Length-based Signature Generator
(LESG) for worms based on buffer overflow vulnerabilities'.
The signatures generated are intrinsic to buffer overflows, and
are very hard for attackers to evade. We further prove the
attack resilience bounds even under worst case attacks with
deliberate noise injection. Moreover, LESG is fast and noise-
tolerant and has efficient signature matching. Evaluation based on
real-world vulnerabilities of various protocols and real network
traffic demonstrates that LESG is promising in achieving these
goals.

I. INTRODUCTION
Computer worms are serious threats to the Internet caus-

ing billions of dollars in economic loss. Recently, zero-day
worm attacks that exploit unknown vulnerabilities have become
popular [2]. Intrusion detection/prevention systems (IDSes) [3],
[4] are proposed to defend against malicious worm attacks by
searching the network traffic for known patterns, or signatures.
Such signatures for the IDSes are currently generated manually
or semi-manually, a process too slow to defend against self-
propagating computer worms.

Thus it is critical to automate the process of worm de-
tection, signature generation and signature dispersion in the
early phase of worm propagation, especially at the network
level (gateways and routers). There is some existing work
towards this direction [5]-[7]. However, to evade detection by
signatures generated with these schemes, attackers can employ
polymorphic worms which change their byte sequence at every
successive infection. Recently, some polymorphic worm signa-
ture generation schemes are proposed. Based on characteristics
of the generated signatures, they can be broadly classified
into two categories - vulnerability-based and exploit-based.
The former signature is inherent to the vulnerability that the
worm tries to exploit. Thus it is independent of the worm
implementation, unique and hard to evade, while exploit-based
signatures capture certain characteristics of a specific worm
implementation. However, schemes of both categories have
their limitations.

Existing vulnerability-based signature generation
schemes are host-based and cannot work at the network
router/gateway level. These schemes [8]-[10] either require
exploit code execution or the source/binary code of the

'It is reported that more than 75% of vulnerabilities are based on buffer
overflow [1].

vulnerable program for analysis. However, such host-level
schemes are too slow to counteract the worms that can
propagate at exponential speed. Given the rapid growth of
network bandwidth, today's viruses/worms can propagate
quickly and infect most of the vulnerable machines on
the Internet within ten minutes [11] or even less than 30
seconds with some highly virulent techniques [12], [13]
at near-exponential propagation speed. At the early stage
of worm propagation, only a very limited number of worm
samples are active on the Internet, and the number of machines
compromised is also limited. Therefore, signature generation
systems should be network-based and deployed at high-speed
border routers or gateways where the majority of traffic can be
observed. Such a requirement for network-based deployment
severely limits the design space for detection and signature
generation as discussed in Section II.

Existing exploit-based schemes are less accurate and can
be evaded. Some of these schemes are network-based and are
much faster than those in the former category. However, most
of such schemes are content-based, which aim to exploit the
residual similarity in the byte sequences of different instances
of polymorphic worms [14]-[18]. As mentioned in [18], there
can be some worms which do not have any content-based sig-
nature at all. Furthermore, various attacks have been proposed
to evade the content-based signatures [19]-[22]. The rest of the
schemes in this category [23], [24] generate signatures based
on exploit code structure analysis, which is not inherent to the
vulnerability exploited and can also be evaded [19].

Therefore, our goal is to design a signature generation system
which has both the accuracy of vulnerability-based schemes
and the speed of exploit-based schemes so that we can deploy
it at the network level to thwart zero-day polymorphic worm
attacks. As the first step towards this ambitious goal, we
propose LEngth-based Signature Generator (called LESG)
which is a network-based approach for generating efficient and
length-based signatures which cannot be evaded. That is, even
when the attacker knows what the signatures are and how the
signatures are generated, they still cannot find an efficient and
effective way to evade the signatures.

Length-based signatures target buffer overflow attacks which
constitute the majority of attacks [1]. The key idea is that in
order to exploit any buffer overflow vulnerabilities, the length
of certain protocol fields must be long enough to overflow
the buffer. A buffer overflow vulnerability happens when there
is a vulnerable buffer in the server implementation and some
part of the protocol messages can be mapped to the vulnerable
buffer. When an attacker injects an overrun string input for the
particular field of the protocol to trigger the buffer overflow,
the length of such an input for that field is usually much longer

1-4244-1588-8/07/$25.00 C2007 IEEE 164

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on November 13, 2008 at 16:26 from IEEE Xplore. Restrictions apply.

than those of the normal requests. Thus we can use the field
input length to detect attacks. This is intrinsic to the buffer
overflow, and thus it is very hard for worm authors to evade.

In addition to being network-based and having high accuracy,
LESG has the following important features.

Noise tolerance. Signature generation systems typically need
a flow classifier to separate potential worm traffic from nor-
mal traffic. However, network-level flow classification tech-
niques [7], [25]-[28] invariably suffer from false positives that
lead to noise in the worm traffic pool. Noise is also an issue for
honeynet sensors [5], [16], [23]. For example, attackers may
send some legitimate traffic to a honeynet sensor to pollute
the worm traffic pool and to evade noise-intolerant signature
generation. Our LESG is proved to be noise tolerant or even
better, attack resilient, i.e., LESG works well with maliciously
injected noise in an attempt to mislead NIDS [19].

Efficient Signature Matching. Many users patch their sys-
tems slowly due to the fact that they may have to restart the
applications or reboot the machines. It is more efficient and
effective to deploy signatures at the NIDS/firewall to filter
out the malicious traffic of an entire enterprise network. Since
the signatures generated are to be matched against every flow
encountered by the NIDS/firewall, it is critical to have fast
signature matching algorithms.In the LESG system, the length-
based signatures can be matched at the network level with a
protocol length parser without any host-level analysis.

In the rest of the paper, we first survey related work in
Section II and discuss the LESG architecture in Section III.
Then we present the length-based signature generation problem
in Section IV, generation algorithm in Section V, and its attack
resilience in Section VI. After that, in Section VII, we use
real Internet traffic and seven real exploit code (enhanced
with polymorphic capabilities) on five different protocols to
test the performance of LESG prototype. Results show that
LESG is highly accurate, noise tolerant, capable of detecting
multiple worms in the same protocol pool, and capable of
online signature generation with small memory consumption.
Finally, we discuss some practical issues in Section VIII and
conclude in Section X.

II. RELATED WORK

Property Of signatures Signature generation mechanismsNetwork-based Host-based
Exploit-based Polygraph [15], DACODA [18],

Hamsa [14], Taint check [17]
PADS [16],
Nemean [23],
CFG [24]

Vulnerability-based Vulnerability
LESG signature [10],

Vigilante [29],
COVERS [8],
Packet Vaccine [9]

TABLE I
COMPARISON WITH OTHER POLYMORPHIC WORM SIGNATURE GENERATION

SCHEMES.

Early automated worm signature generation efforts include
Honeycomb [5], Autograph [7], and EarlyBird [6], but they do
not work well with polymorphic worms.

Existing work on automated polymorphic worm signature
generation can be broadly classified into vulnerability-based
and exploit-based. Based on signature generation input require-
ments, we can further categorize these schemes on another axis:

host-based vs. network-based. The former requires either ex-
ploit code execution or the source/binary code of the vulnerable
program. On the other hand, the network based approaches rely
solely on network-level packets. The classification of existing
schemes and LESG is shown in Table I.

Exploit-based schemes. We have discussed most of them in
the introduction [14]-[18], [23], [24]. For example, Christopher
et al.proposes using the structural similarity of the Control
Flow Graph (CFG) to generate a fingerprint as signatures [24].
However, their approach can be evaded when the worm body
is encrypted. Furthermore, compared with length-based signa-
tures, it is much more computationally expensive to match the
fingerprint with the network packets. Thus it cannot be applied
to filter worm traffic at high-speed links.

In comparison with most recent work in this category, such
as Hamsa [14], LESG has better attack resilience, e.g., it has
better bounds for deliberate noise injection attacks [19].

Vulnerability-based and host-based schemes. Brumley et
al.presents the concept of a vulnerability signature in [10] and
argues that the best vulnerability signatures are Turing machine
signatures. However, since the signature matching for Turing
machine signatures is undecidable in general, they reduce the
signatures to symbolic constraint signatures or regular expres-
sion signatures. Their approach is a heavyweight host-based
approach, which has high computational overhead and also
needs some information such as the vulnerable program, multi-
ple execution traces, and the vulnerability condition. Similarly,
Vigilante [29] proposed a vulnerability-based signature which
is similar to the MEP symbolic constraint signatures in [10].

Liang et al.proposed the first host-based scheme to generate
length-based signatures [1], [8]. Packet Vaccine [9] further
improves the signature quality by using binary search. Un-
fortunately, both of them are host-based approaches and are
subject to the limitations mentioned before and some additional
shortcomings. First, they need to know the vulnerable program.
Sometimes, they have to try many different implementation
versions to find the vulnerable ones. Second, the signature gen-
erated by [8] based on a small number of samples may be too
specific to represent the overall worm population. Therefore,
detection based on their generated signatures tends to have high
false negatives. Moreover, the protocol specification language
they used is not expressive enough for many protocols.

Other related work. There are previous research efforts on
network-level detection of buffer overflow exploits. However,
they do not generate any effective signatures due to high
matching overhead and high false positives. TCTP [30] detects
buffer overflow attacks by recognizing jump targets within the
sessions. Approaches like SigFree [31] detect exploit codes
based on control flow and data flow analysis.

III. ARCHITECTURE OF LESG
As shown in Figure 1, LESG can be connected to multiple

networking devices, such as routers, switches and gateways via
a span (mirror) port or an optical splitter. Most modem switches
are equipped with a span port to which copies of entire packets
in the traffic from a list of ports can be directed. In addition,
LESG can also be used to monitor traffic for a large-scale
honeynet/honeyfarm by sniffing traffic at its gateways. The hon-
eynet/honeyfarm can be either centralized or distributed [32]-
[34].

Similar to the basic framework of Polygraph [15] and

165

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on November 13, 2008 at 16:26 from IEEE Xplore. Restrictions apply.

-(Honey LESG
e system

Fig. . Deployment of LESG.

Hamsa [14], we first need to sniff traffic from networks and
classify the traffic as different application level protocols.
Next, we filter out known worms and then further separate
the traffic into a suspicious traffic pool and a normal traffic
reservoir using an existing flow classifier [7], [25]-[28].

Similar to Polygraph [15] and Hamsa [14], we use an existing
flow classifier that may use various techniques (such as hon-
eynet/honeyfarm [32]-[34], port scan detection [7], [35], byte
frequency detection [26], [27], and other advanced techniques)
to identify suspicious flows. Note that the flow classifiers can
operate at the line speed of routers as achieved in our previous
work [35]. The scan detection based flow classifiers first
detect the hosts scanning a particular port number and then
classify successful TCP connections from any of the scanning
hosts with that particular destination port number as suspicious
flows. It is effective against any scanning worm. Meanwhile,
the honeynet/honeyfarm based approach considers any traffic
caught in the honeynet/honeyfarm as suspicious flows.

Leveraging the normal traffic selection policy mentioned
in [14], we can create the normal pool. The suspicious pool
and the normal pool are inputted to the signature generator as
shown in Figure 2. We first specify the protocol semantics and
use a protocol parser to parse each protocol message into a set
of fields. Each field is associated with a length and a type. The
field length information of both the suspicious pool and the
normal pool are given as input to the "LESG core"(signature
generation algorithm) module to generate the signatures.
A. Protocol Parsing

As emphasized in [36], protocol parsing is an important step
in any semantic analysis of network traffic, such as network
monitoring, network intrusion detection systems [3], [4], smart
firewalls, etc.. We analyzed three text-based protocols (HTTP,
FTP, and SMTP) and seven binary protocols (DNS, SNMP,
SMB, WINRPC, SUNRPC, NTP, SSL). We find that, in gen-
eral, it is much easier and faster to parse the lengths of the
protocol fields than full protocol parsing.
Some recent research, such as BINPAC [36], has studied

how to ease the job of writing a protocol parser. BINPAC
is a yacc-like tool for writing application protocol parsers. It
has a declarative language and compiler, and actually works
as a parser generator. Its input is a script which is actually
a protocol specification written in BINPAC language. The
output is a parser code for that protocol. Currently, BINPAC is
executed in connection with Bro [4], which implements other
necessary traffic analysis at lower levels. With BINPAC, writing
a protocol parser has been greatly simplified. Furthermore, not
only can the available scripts provided by Bro be reused, but
also many people can potentially contribute and produce more
reusable protocol specifications for BINPAC as an open source

tool. Because of these advantages, we use BINPAC and Bro for
packet flow reassembling and protocol parsing in our research.

IV. LENGTH-BASED SIGNATURE DEFINITION AND
PROBLEM STATEMENT

In this section, we model each application message as a field
hierarchy, and present it as a vector of fields. Based on this
model, we formally define the length-based signatures and the
length-based signature generation problem.
A. Field Hierarchies

Each of the application sessions (flows) usually contains one
or more Protocol Data Units (PDUs), which are the atomic
processing data units that the application sends from one end-
point to the other endpoint. PDUs are normally specified in
the protocol standards/specifications, such as RFCs. A PDU
is a sequence of bytes and can be dissected into multiple
fields. Here, a field means a sub-sequence of bytes with special
semantic meaning or functionality as specified in the protocol
standard. Typically, a field encodes a variable with a certain
data structure, such as a string, an array etc.. Take the DNS
protocol as an example. Figure 3 shows the format of the DNS
PDUs. It has a header and four other sections - QUESTION,
ANSWER, AUTHORITY and ADDITIONAL. Each section is
further composed of a set of fields. The QUESTION section
contains one or more DNS queries that are further composed
of field class QNAME, QTYPE and QCLASS. The other three
sections contain one or more Resource Records (RRs), and each
RR is composed of six lower level fields (NAME, TYPE, etc.).
Borrowing terms from the object model, we call the type of
fields, such as QNAME and QTYPE, the field class, and each
concrete instance of a certain field an instance of the field.
Among all the field classes in PDUs, some, e.g., QNAME,

NAME and RDATA, are variable-lengthfields; others arefixed-
length fields, in which the instances all have the same length
as defined in the protocol standard.
We make the following two observations on such a rep-

resentation of PDU. First, the number of instances of one
field class in a PDU may vary. For example, one PDU may
contain one instance of field A, and another PDU may contain
two. Second, in certain server implementations, it is possible
that the concatenation of multiple field instances (of the same
field class or not) are stored in one buffer. That is, if the
server has an overflow vulnerability related to this buffer, it
is the concatenation of several field instances that can overflow
the buffer. For example, imagine a DNS server receives a
DNS PDU and stores the entire PDU in a vulnerable buffer.
What overflows the buffer is the concatenation of all the field
instances. These two observations have been further validated
on other protocols such as SNMP and WINRPC.

With these considerations, we design a hierarchical model
to describe the possible field classes in a PDU. As Figure 5
shows, we denote the QUESTION section as a new field 0,
a concatenation of all the instances of field A and B2, 0 =
(AB)*. In short, we include all possible variable-length fields
that potentially correspond to vulnerable buffers. We build such
a hierarchy for every flow.

In the rest of the paper, we refer to variable-length fields
simply as fields for the sake of brevity. Suppose there is a total
of K classes of fields in the hierarchy constructed for a certain

2we denote the variable-length field QNAME as A, and the concatenation
of fixed-length field QTYPE and QCLASS as B.

166

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on November 13, 2008 at 16:26 from IEEE Xplore. Restrictions apply.

Protocol
Specification __

VTraffic Pool

Suspiciou

l

|'Parsed'
LESG Sig
Core

K-Parsed
Suspiciou

NO

Filter

Quit YES

Header
Question
Answer
Authority
Additional

questions

QNAME
QTYPE
QCLASS

NAME
RRs TYPE

CLASS
TTL

RDLENGTH
RDATA

Fig. 3. Illustration of DNS PDU
Fig. 2. LESG signature generator

protocol. We use an index set E = {1,2,... K} to denote
these K fields. Let Xk,k = 1,2,... K, be the maximum
among the lengths of potentially multiple instances of field k,
then a vector X = (X1, X2, ... ,XK) is generated to represent
the field lengths for each field in a session (flow).
B. Length-based Signature Definition

Based on the length vector representation of a session, we
formally define the concept of a length-based signature in this
section. A signature is a pair Sj = (fj,lj), where fj C E, fj
is the signature field ID, and Ij is the corresponding signature
length for field fj.
When using the signature to detect the worms, the matching

process is as follows. For a flow X = (X1,X2,... ,XK), we
compare xfj and Ij. If xfj > Ij, then the flow X is labelled
as a worm flow; otherwise it is labelled as a normal one. More
than one signature corresponding to different fields can possibly
be generated for a given protocol, resulting in a signature set
S = {S, S2. , SJ4. A flow, which may contain one or more
PDUs, will be labelled as a worm if it is matched by at least
one signature in the set.
The length-based signatures are designed for buffer over-

flow worms. The signature field should be exactly mapped
to a vulnerable buffer. In this case, the field of this instance
must be longer than the buffer to overflow it, while normal
instances must be shorter than the buffer. Note that different
servers may implement different buffer lengths if the maximal
length is not specified in the RFC. Here we focus on pop-
ular implementations because the spread speed and scope of
worms will be significantly limited if they only target unpopular
implementations. We define the minimum buffer length of
popular implementations as the ground truth signature, denoted
as B = (fB, LB) where LB is the vulnerable buffer length.
Even with multiple different implementations, for the field
related to the vulnerable buffer, the distributions of normal
flows and worm flows should be well apart. That is, the lengths
of normal flows should be less than LB because for a popular
server implementation (e.g., FTP), there are often various client
programs communicating with it without knowing its buffer
length. So LB should be large enough for most of the normal
flows. On the other hand, those of worm flows should obviously
be larger than LB.
As elaborated below, our algorithm will not output any sig-

natures for non-buffer-overflow worms because our algorithm
ensures that all generated signatures have low false positives.
C. Length-Based Signature Generation Problem Formulation

If the flow classifier is perfect, all the flows in the suspicious
pool are worm samples. If the worm is a buffer overflow worm,
finding a length-based signature amounts to simply finding the
best field and the field length with minimal false negatives and
minimal false positives. However, in practice, flow classifiers at

AB AB IDE D GH I K

Fig. 4. Abstraction of DNS PDU

AB AB ICDE C..DE IFGH .. FGH IJKlt IJKL N

| L ... L M .. M N .. N
I11

0 Q R

Fig. 5. Hierarchical Structure of DNS PDU

the network level are not perfect and always have some false
positives, and therefore, the suspicious pool may have some
normal flows. Finding signatures from a noisy suspicious pool
makes the problem NP-Hard (Theorem 1). On the other hand,
due to the large volume of traffic on the Internet, we assume
the noise (worm flows) in the normal pool is either zero or very
limited, and thus it is negligible.

After filtering existing known worms, there can be multiple
worms of a given protocol in the suspicious pool, though the
most common case is a single worm having its outbreak under-
way in the newly generated suspicious pool. The output of the
signature generation is a signature set S = {S1, S2, SJ }.
A flow matched by any signature in this set will be labelled as
a worm flow.

In Table II, we define most of the notations used in the
problem formulation and theorems.
Problem 1 (Noisy Length-Based Signature Generation
(NLBSG)).
INPUT: Suspicious traffic pool M {M1, M2,} and nor-
mal traffic pool A"= {N1, N2,}; value y < 1.
OUTPUT: A set of length-based signatures S
{(fl, 1l), ...* (fj, Ij)} such that FPS is minimized subject to
COVs > 1 - y.
Theorem 1. NLBSG is NP-Hard

Proof Sketch: The proof is by reduction from Minimum
k Union, which is equivalent to Maximum k-Intersection [37].

V. SIGNATURE GENERATION ALGORITHM 0

Although the problem NLBSG is NP-Hard in general, for
buffer overflow worms, the algorithms we proposed are fast
and have fair accuracy even in the worst case scenarios. We
formally proved the theoretical false positive and false nega-
tive bounds with or without adversaries to inject intentionally
crafted noise. To the best of our knowledge, we are the first
network based signature generation approach that has the ac-
curacy bound even with adversaries' injected noise.
The protocol parsing step generates (field id, length) pairs for

all flows in the normal traffic pool and suspicious traffic pool
respectively. Based on that, we design a three-step algorithm
to generate length-based signatures.
Step 1: Field Filtering Select possible signature field candi-
dates.
Step 2: Signature Length Optimization Optimize the signature
lengths for each field.
Step 3: Signature Pruning Find the optimal subset of candidate
signatures with low false positives and false negatives.
A. Field Filtering

In this step of the algorithm, we make the first selection
on the fields that could possibly be signature candidates. The
goal is to limit the searching space. Two parameters are set

167

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on November 13, 2008 at 16:26 from IEEE Xplore. Restrictions apply.

