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Abstract— TFRC is a TCP-Friendly Rate Control protocol
based on TCP Reno’s throughput equation. It is designed to
provide optimal service for unicast multimedia flow operating in
the wired Internet environment. However, in wireless networks,
TFRC, same as TCP Reno, suffers significant performance
degradation. In this paper, we propose to make use of a more
advanced equation to enhance TFRC over wireless networks.
This new equation is directly derived from the modeling of the
wireless TCP rather than the wired TCP. After incorporating
this equation into TFRC, two achievements are obtained: 1)
this enhanced TFRC has a significant throughput improvement;
it is shown that in wireless networks with 10% loss rate, it
can obtain 300% improvement over the original TFRC; 2) this
enhanced TFRC inherits the desirable features of TFRC, namely
good fairness, nice TCP-friendliness and smoothness of sending
rate. The extensive experiments, including simulation and live
Internet measurements, validate our proposed scheme. Moreover,
our scheme only needs to modify the sender-side protocol of
TFRC while the receiver-side or intermediate node protocol stack
remains intact.

I. INTRODUCTION

Wireless communication technology will be playing an
increasingly important role in access networks, as evidenced
by the widespread adoption of wireless local area network
(WLAN), wireless home networks, and cellular networks.
These wireless access networks are usually interconnected
using wired backbone networks, and many applications on the
networks run on the TCP/IP protocol.

TCP is a reliable connection-oriented protocol that imple-
ments flow control by means of a sliding window algorithm.
TCP Reno [1], which makes use of the S§ (slow start) and
CA (congestion avoidance) algorithms to adjust the window
size, has enjoyed much success to date. While TCP congestion
control is appropriate for applications such as bulk data trans-
fer, real-time applications, i.e., online TV and VoIP, cannot
be supported because of TCP’s abrupt window reduction.
In order to provide optimal service for unicast multimedia
flow operating in the best-effort Internet environment, TCP-
Friendly Rate Control (TFRC) [2], employing a throughput
equation, was standardized in RFC 3448, This throughput
equation, derived from TCP Reno congestion control algo-
rithm [3] (hereinafter, called the “Reno equation™), dictates
the performance of TFRC.

It is known that wireless networks may suffer high packet
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loss rate. TCP Reno always treats the occurrence of packet
loss as a manifestation of network congestion. This assumption
does not apply to networks with wireless channels, in which
packet loss is often induced by noise, link error, or reasons
other than network congestion. As in [4], we refer to such
packet loss as random packet 1oss. Misinterpretation of random
loss as an indication of network congestion causes Reno
to reduce the sending data rate unnecessarily, resulting in
significant performance degradation [4] [3] [6]. Consequently,
TFRC, equipped with the Reno equation, will also unavoidably
suffer severe performance degradation in wireless networks.

In this paper, we explore the enhancement of TFRC over
wireless networks, using a more advanced equation to replace
the Reno equation. Firstly, a more advanced throughput equa-
tion is derived through the modeling of TCP Veno, a wireless
TCP congestion control algorithm [7]. The simulation and
live test results verify the effectiveness of this new equation
(hereinafter, called the “Veno equation”) under different lossy
situations.

Secondly, we apply this new equation to enhance TFRC
performance. The new protocol is thus referred to as TFRC
Veno. Our extensive experiments, including simulations and
live Internet measurements, demonstrated that 1) TFRC Veno
can achieve significant throughput improvement up to 300%
over TFRC in wireless networks with 10% loss rate, and
2) the desirable features of fairness, TCP-friendliness and
smoothness in this enhanced TEFRC are same as in the original
TFRC; that is, our improved throughput does not bring about
any negative effect. It should also be noted that TFRC Veno
only involves modification of TFRC at the sender side without
requiring any changes of the receiver protocol stack or inter-
vention of the intermediate network nodes. It can therefore be
deployed immediately in server applications over the current
Internet.

The remainder of the paper is organized as follows. Section
IT describes the related work, including several previous en-
hancements of TFRC. Then in Section IIT we talk about TFRC
Veno with the Veno equation introduced. We comprehensively
evaluate the overall performance of TFRC Veno in Section
IV, with different metrics such as throughput, faimess, TCP-
friendliness, and sending rate variation. We also compare our
proposal with another sender-modified enhancement MULT-
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FRC [12]. Finally, Section V concludes this paper.

II. RELATED WORK

Over the last years, some researchers have studied the
throughput degradation problem of TFRC over wireless net-
works, and tried to eliminate such degradation with various
approaches. Roughly speaking, these efforts can be divided
into two categories: network-supported enhancements and end-
to-end enhancements.

Network-supported enhancements of TFRC need the sup-
port of the intermediate nodes in the network, such as routers,
proxies, access points, or other kinds of devices. The typical
examples are ECN-based TFRC [8], Proxy-based TFRC [9],
WM-TFRC [10], and AED-based TFRC [11].

ECN-based TFRC [8] uses intermediate routers to detect
incipient network congestion and informs the receiver using
Explicit Congestion Notification (ECN) marking. The receiver
then measures the marking event rate p and feeds this in-
formation back to the sender. In this way, ECN-based TFRC
ignores the losses oceurring over the wireless hop or the effect
of packet reordering encountered in the Internet, and only
accounts for congestion losses in sending rate adjustments.

Proxy-based TFRC [9] employs a proxy to split the client-
server connection, and uses TFRC only over the shared part of
the client-server connection, i.e., the part between server and
proxy. In the other part between client and proxy, it tunnels
RTP via a TCP which is TCP-friendly by definition. This
method improves the average throughput and wireless link
utilization.

WM-TFRC [10] uses the access point (AP) in wireless LAN
to measure the rate of wireless loss events (i.e., loss events
caused by bit errors) p,, and feeds this value back to the sender
periodically. Meanwhile, the receiver also provides feedback
about the rate of total loss events (including wireless loss and
congestion loss) p to the sender. Therefore, the sender can
deduce the rate of congestion loss events (i.e., loss events
caused by congestion) pssy by sublracting p, from p. In this
way, the sending rate of WM-THFRC, which is deduced from
Peor, iNstead of p, can be improved.

AED-based TFRC [11] uses a new differentiation scheme
called Accurate and Explicit Differentiation (AED) to improve
the performance of TFRC. AED assumes that agents are
deployed before and after each wireless link. The agents
inspect each packet and detect a loss by finding a packet with
an out-of-order sequence number. Agents at the edge of wired
networks treat a packet loss as a congestion loss and agents
after a wireless link treat a packet loss as a wireless loss. The
agents then mark the packets that are not lost with information
about the lost packets (i.e., whether those packets were lost
due to congestion or random errors). Thus, when receiving
these marked packets, the receiver can calculate the correct
loss event rate and provide feedback to the sender.

As described above, network-supported enhancements need
to add new functions to the intermediate nodes in the network.
This will cause the deployability problem in the real networks
because it is difficult to change or replace the existing devices

in the Internet. In contrast, end-to-end enhancements can
avoid these deployment difficulties since their modifications
on TFRC only involve the end nodes (sender or receiver or
both). MULTFRC [12] belongs to this category, and it only
modifies TFRC protocol on the sender side.

MULTFRC [12] borrows its idea from MULTCP [13],
which was originally used to improve TCP performance in
high bandwidth-round-trip-time product networks. The au-
thors of MULTFRC find that using one TFRC connection
in streaming applications results in under-utilization of the
wireless bandwidth. They then propose the use of multiple
simultaneous TFRC commections for a given wireless streaming
application. The basic idea behind MULTFRC is to measure
the round-trip time and adjust the number of comnections
accordingly. Specifically, MULTFRC increases the number of
connections n by a/n or decrease it by 5 depending on the
rit measurements, that is,

n_{ R_Ba

n+a/n,

where o, 3 and ~ are preset constant parameters, and the
default values are 1, 1, and 0.2 respectively; ave rtt is the
average round trip time; for a given route, ré{_min is the
minimum round trip time for that route, i.e. with no queuing
delay. The authors also provide an enhancement of MULT-
FRC, called ATO-TFRC [14] to overcome the complexity issue
of the MULTFRC implementation and undesirable results of
quantization effect in MULTFRC. However, in spite of the
high throughput achieved, both MULTFRC and its variant
suffer from poor faimess and poor TCP-friendliness, as with
MULTCP [13].

ave_rtt — rtt_min > yritimin
otherwise

(1)

III. TFRC VENO

TFRC Veno is also a kind of end-to-end enhancement which
only modifies TFRC on the sender side. Different from all the
previous efforts that keep the Reno equation in TFRC intact,
TFRC Veno in this paper tries to use a more advanced equation
to replace the Reno equation. In fact, this equation is derived
from wireless TCP, namely, TCP Veno.

A. Verno Egquation

TCP Veno was proposed in 2003 [7] and has been incorpo-
rated in the Linux Kemel since version 2.6.18 [15]. The key
idea of TCP Veno is to use state differentiation — congestion
state or non-congestion state — to circumvent the difficult
judgment of the packet loss type — congestion loss or random
loss. Specifically, the number of packets on the connection N
is estimated as follows:

B cwnd
" RTT

where cwnd is the current congestion window size; Base RT'T
is the minimum of the measured round-trip time collected so
far, and is reset whenever packet loss is detected either due to
time-out or duplicated ACKs; RT'T' is the smoothed measured
round-trip time.

x (RIl' — BaseR1'T" (2)
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If N is smaller than a certain threshold 5 when a packet
loss occurs, the packet loss is deduced as random loss, and
Veno decreases its congestion window (cwned) with factor dy;
otherwise, the packet loss is regarded as congestion loss and
Veno thus decreases its congestion window with factor &;.
Equation (3) describes this operation. Normally /5 is set to be
3, #1 is set to be %, and &5 is set to be % A detailed Veno

algorithm is included in [7].
N«<p

cwnd = { N>8 3)

Asg a matter of fact, TCP Veno acts quite similarly as Reno,
and the only difference between TCP Veno and TCP Reno
is how much the cwnd value should be reduced when losses
occur: Reno always decreases its ewnd with factor % while
Veno sometimes decreases it with factor #; (random loss), and
sometimes with factor 85 (congestion loss). In this case, we
introduce a random variable A to represent a dynamic window
drop factor, rather than a fixed factor of % as in [3]. That is, A
can be &; or f; with certain probability. In fact, A reflects how
Veno performs window multiplicative reduction in response to
packet loss.

cwnd X 81,
cwnd X 82,

Packets sent
A
I:I ACKed packet

W, % Lost packet

i

AWy & TD oceurs

3 TOP ends

2[5 7,
14 » Number of rounds
123 4 .. X,

e el Last round

b b b Penultimate round
* TDF,
Fig. 1. Packets sent during a TD period.

Following [3], we consider a TD period (TDP) in Veno,
which is a period between two TD losses (losses indicated
by three-duplicated ACKs). As shown in Figure 1, the y-
axis represents the number of packets sent during the current
TDP, and the x-axis represents the number of rounds in the
current TDP. Here a “round” starts with the back-to-back
transmission of W packets, where W is the current size of the
TCP congestion window. Once all packets falling within the
congestion window have been sent in this back-to-back man-
ner, no other packets are sent until the first ACK is received
for one of these W packets. This ACK reception marks the
end of the current round and the beginning of the next round.
In Figure 1 the number of rounds in a TDP is represented by
X;. b is the number of packets that are acknowledged by a
received ACK. Many TCP receiver implementations send one
cumulative ACK for two consecutive packets received (i.e.,
delayed ACK), so b is typically 2. If W packets are sent in the
current round and are all received and acknowledged correctly,
then W/b ACKs will be received. Since each ACK increases
the congestion window size by 1/W, in the current round the

windows size is incremented by W/bx1/W = 1/b. W;_1 and
W; are the congestion window sizes at the end of the previous
TDP and the current TDP, respectively. According to the Veno
algorithm, the current TDP starts with the congestion window
size of \;W;_1, where A; is either #; or #,. After that, the
window size is incremented by 1/b at each round until the end
of the TDP.

If ¥; is the mumber of packets sent in the period, and A;
is the duration of the period, then the long-term steady-state
Veno throughput can be shown to be:

_ EY]
B= E[A “)
It is observed in [3] that:
ol g ;p + E[W] )
and,
E[A] = RTT(E[X] + 1) ()

where p is the probability that a packet is lost, given that either
it is the first packet in its round or the preceding packet in its
round is not lost. Note that p includes both congestion and
random losses. RT'T is the average value of round trip time.
Detailed derivations can be found in [3]. According to Figure
1 we have: X

Wi =AW + ?ﬁ (7

Then the packets transmitted between these two TD losses
are:

X1
Y, = Z (AWi1 + R)b +
k=0
X
= 7(A5W5—1 + Wiy — 1)+ (8)

where 7; is the number of packets sent in the last round,
as seen in Figure 1. n; is considered a uniformly distributed
random variable between 1 and W; in [3]. We inherit this
distribution in the Veno derivation.

From (7), (8) and (5), we have:

(1 - B Ew) = X ©
and,
2y pw) = B+ BpEw -0+ B ao)
where E[n] = ETW]
Let v = £[A], and from (9) and (10) we can get:
-yl enop) | (B
BV S \/bu v Ty Y
Then from (9) and (6), we have:
i1 [ -pop) | ()
Blxl= 20+ \/ Ut (7 (12)
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and,

b1 i 251 i (bi_;+1)2
BAJ=RTT | 20yt BUpli=s 1) a3

B

Finally, substituting £[A] and E[W] into (4) and (5) we
have:

1—P+b(1*’3‘)+1+\/ 21—p) _NM)Q
P 2Rl —~2) bi—d)p = B4(1—o%)
Bl—t1.s

B{i—) 41 Bh(i—yy(1—p) , (=g ——
RTT( 2(117) +\/ (117)13 E (1) +1

B(p)= (14)

For small values of p, the above can be approximated by:

1 I+
B0~ g\ i

This is the throughput formula without accounting for TO
(time-out) and advertisement window limitation. Following the
steps in [3] we can also derive the complete formula. Due
to the space constraints, we only give the final approximated
result. Detailed derivations can be found in [16].

(15)

B(p)~min (‘3‘;% : )
rrT./ 2YETE 4Ty min (1,3 ﬂ#ﬁ)p(prwp?)
(16)
Now we need to determine the value of . From our
definition:
v = E[A

= 6'1XP(N<£)+6'QXP(N2£)
= 61 x P(N<B)+6:x(1—P(N<8))
= 92+(91*92)XP(N<}3)

According to (2):

(17

N x (RTT — BaseRTT)

- RIT (18)

Here we use W to indicate the current congestion window
size. For simplicity, we assume the value of W at losses
(including congestion and random losses) is uniformly dis-
tributed between 0 and Wiyax,, where Wiax 18 the maximum
congestion window size during the transmission. Then we
have:

RI'T
PN <p) = PW<BX prr g RTT)
— in (1 3 x RIT
* (RTT — BaseRTT) X Whax
(19)
From (17) and (19) we have:
- - B x RTT
T (91’ bt O = 0) X BT~ BaseRTT) X W
(20

Equation (16) with (20) is derived from TCP Veno, which
is also referred to as the Veno equation. Different from the
equation of TCP Reno [3], the Veno equation uses a variable
¥ € [f2,61] to replace the original constant }. Here we call
it the “Veno parameter”. The following validations on NS-2

[17] simulation and live Intermet experiments show that this
Veno equation indeed approximates the experimental results
quite well.

Figure 2(a) illustrates a simulation topology, where eight
TCP Veno flows (Flow 1 ~ 8) run from the left side network
to the right side network through the bottleneck link. The left
side network has wired links with bandwidth of 10 Mbps,
and delay of 1 ms. The right side network is a heterogeneous
network with wired and wireless links, whose bandwidths are
all 10 Mbps. The delays of the wired links are (20 x ¢ — 19)
ms, ¢ = 1,2,...,8, and the delays of the wireless links are all
1 ms. Random losses in wireless links follow the exponential
distribution and the packet loss rate ranges from 0.0001 to 0.1.
The bottleneck link between these two networks is a wired
link with bandwidth of 12 Mbps and delay of 10 ms. Its
packet buffer size is set to be 40. Packet sizes of TCP Veno
flows are 1000 bytes. We also set up 8 UDP connections as
background traffic in our tests. These UDP flows follow Pareto
distributions [18]. The burst time and idle time are both 100
ms. The rate of each connection is 300 Kbps and the packet
size is 512 bytes.

Figure 3(a) gives the validation result on one of the TCP
Veno flows — Flow 5. The theoretical results are quite con-
sistent with the experimental results. We also plot the curves
when v = f = % and v = 6 = %, which are the minimum
and maximum boundaries of the Veno equation. Observing
Figure 3(a), we find that almost all experimental results indeed
fall into a region between these two curves. Figure 3(b) plots
the validation results of Flow 2, 4, 6, 8. Obviously, all these
experimental results can be accurately predicted by the Veno
equation.

In order to further validate this model, the live Internet
experiments are conducted over cross-country WANs. We set
up a wireless client at Nanyang Technological University
(NTU) in Singapore, and a TCP Veno server at The University
of Hong Kong (HKU) in Hong Kong, as seen in Figure 2(b).
One TCP Veno flow runs over the link from the server to
the client, and the packet size is 512 bytes. In the wireless
side, the client is a Compaq laptop with W200D wireless
card. The wireless Access Point is a Cisco Linksys WRIT'54G.
They are placed in the different corners of a room and the
distance between them is about 8§ meters. The bandwidth of
the wireless network is 11 Mbps and the frequency is 2.4
GHz. The measurement method in the Internet experiments
is the same as that described in [3]. The 1 hour flow trace
is divided into 36 consecutive 100-second intervals, and we
count the number of packets transmitted, RTT, BaseRTT,
and the packet loss rate p in every interval. Note that p is
given as the total number of loss indications (TD and TO)
divided by the number of packets transmitted. Then, we put the
average values of RTT and BaseRTT into the Veno equation
to calculate the theoretical result. Due to space constraints, we
only give two samples collected recently, as shown in Figure
4(a) and 4(b). The results demonstrate that the Veno equation
can model TCP Veno’s throughputs fairly well.

219

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on November 13, 2008 at 16:35 from IEEE Xplore. Restrictions apply.



TCP Veno

Backgrourd traffic

@

Fig. 2. Topologies of (a) simulation experiments, and (b) Internet experiments.
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B. TFRC Veno Mechanism

Figure 5 gives a brief introduction of the original TFRC
mechanism. Specifically, TFRC lets the receiver estimate the
packet loss rate p on the link and return such information to
the sender through ACKs. After receiving the value of p, the
sender adjusts its sending rate based on the Reno equation:

s
RTT. /% 4 3T,

Tca.lc = (2 1)

852.(1 + 32p2)

where T, is the expected sending rate in bylesfsec; S is
the packet size in bytes; RT'T" is the round-trip time; p is the
steady-state rate of loss event; Ty is the retransmit timeout
value.

TFRC Veno modifies TFRC by replacing the above Reno
equation with the Veno equation, that is, the sender now

Throughput (packet/s)

0.01 0.1
Packet Loss Rate

b

0.0001 0.001

Simulation results on (a) a single flow, and (b) multiple flows.

10000

Equation
Experimsnt  +

3 1000 F
a
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U
i
o
W 100
o
~
Q
o)
g
2 1o b

§ . .

0.001 0.01 0.1 1

Packet Loss Rate

Internet experiment results.

Sending rate =T__(p)
O
w Recer

Estimated p

Fig. 5. Basic mechanism of TEFRC.

adjusts its sending rate based on the following equation:

s
RTT,/24=08 4 37y /¥=008 41 1 392)

(22)

Note that here we ignore the effect of the maximum conges-
tion window size in the Veno equation (16). Furthermore, the
original Veno equation calculates throughput in packets/sec,

Tcalc =
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while here we multiply it by the packet size (S) to calculate
throughput in bytes/sec. These two changes are the same
as those of the Reno equation when used in TFRC. The
other mechanisms in TFRC, such as slow start, packet loss
estimation, and time-out mechanism, are not changed in TFRC
Veno. Here + is in the range [#1, #2], with the settings of
91 =0.95 and 92 =0.5.

IV. PERFORMANCE EVALUATION

We conduct various experiments including both NS-2 simu-
lation and live Internet experiments, to comprehensively eval-
uate the performance of TFRC Veno in terms of throughput,
fairness, TCP-friendliness, and sending rate variation. We also
compare our proposal with the original TFRC and another
sender-modified enhancement MULTFRC [12]. The results
in the experiments show that, TFRC Veno combines both
advantages of TFRC and MULTFRC while avoiding their
drawbacks, that is to say, TFRC Veno has much better through-
put than TFRC while keeping the nice features of fairness,
TCP-friendliness, and sending rate variation; TFRC Veno has
much better fairness and TCP-friendliness than MULTFRC
while having the same throughput as MULTFRC.

A. Simulation Experiments

The topology of the simulation experiments is depicted in
Figure 6. The left side of the network has wired links with
bandwidth of 10 Mbps, delay of 1 ms and buffer size of 50
packets. The right side of the network has wireless links with
bandwidth of 10 Mbps, delay of 1 ms and buffer size of 50
packets. The bottleneck link between these two networks is a
wired link with a bandwidth of 12 Mbyps, and delay of 80 ms.
Its buffer size is set to be 20 packets. Three types of flows
— TFRC, MULTFRC, and TFRC Veno — are transferred from
the wired network to the wireless network. Packet sizes are
all 1000 bytes. Furthermore, we set up 8 UDP connections
with pareto distribution [18] over the bottleneck link as the
background traffic. The burst time and idle time are both 100
ms. The packet size of UDP is 512 bytes and the rate of each
connection is 300 Kbps. Each experiment lasts 300 s, and
is repeated 20 times. We plot the average of these results in
the following figures and use the error bars to represent 95%
confidence intervals.

10 Mbps, 1oMbps. (1
i Tms tms gk .
- /—~\ o /§:‘ .

R

THRCS
MULTERCGS y
[FRC Veno \/ i Mpbs, Fad ity -
o Joy soms S R
OB - ~ (@)
Fig. 6. Topology of simulation experiments.

In order to fully evaluate the performance of TFRC Veno,
our simulation uses two different random loss models —
exponential distribution and two-state distribution — in the
wireless links. In the exponential distribution, packet loss rate

ranges from 0.0001 to 0.1. In the two-state distribution, the
good state has packet loss rate of 0.00001 and period of 8 s,
and the bad state has packet loss rate ranging from 0.0001 to
0.1 and period of 4 s. Furthermore, the good state has 95%
probability to transit to the bad state after each period, and the
bad state transits to the good state also with 95% probability.

1) Throughput: Firstly we let 8 target (TFRC or MULTFRC
or TFRC Veno) flows run in the experiment and calculate
their average throughputs. Here the throughput is counted
as the number of packets sent divided by the transmission
time. Figure 7(a) and 7(b) plot the throughput comparisons of
these three protocols — TFRC, MULTFRC, and TFRC Veno —
under different types of random losses. Note that the packet
loss rate in Figure 7(b) corresponds to the bad state packet
loss rate in the two-state distribution. As shown in these two
figures, TFRC Veno has a similar throughput as MULTFRC:
its throughput is a little lower than that of MULTFRC when
random loss follows the exponential distribution while a little
higher when random loss follows the two-state distribution.
Furthermore, both TFRC Veno and MULTFRC has much
better throughput than TFRC. In particular, the throughput
improvement can be up to 300% over TFRC when the packet
loss rate is 0.1.

Secondly, we vary the number of target flows from 4 to
32 and study their performance. The random packet loss rate
is set to 0.01. Observing Figure 8, our proposal also has a
similar performance as MULTFRC under different numbers
of comnections. As the number of flows increases, which
means the congestion is gradually dominating the network,
both TFRC Veno and MULTFRC become having the similar
throughput performance to TFRC.

2} Fairmess: Faimess means the same kind of flows should
share the total bandwidth fairly. Figure 9(a) and Figure 9(b)
plot the sequence numbers of 16 MULTFRC flows and 16
TFRC Veno flows respectively, when they run over a network
where random losses follow the exponential distribution and
the loss rate is 0.01. Comparing these two figures, TFRC
Veno flows share the bandwidth equally while the evolution of
the flows among MULTFRC connections may have significant
difference.

In order to have a better fairness comparison among TFRC,
MULTFRC and TFRC Veno, Jain’s Fairness Index f [19] is
used here:

(23)

1 () oy

where n is the number of connections, x; is the throughput
of the ¢th connection. The closer f is to 1, the more fairness
the target flows enjoy. It should be pointed out that f is not
a sensitive function. That is to say, a quite different fairmess
situation can only result in a little variation of f. For example,
f of MULTFRC in Figure 9(a) is only 0.03 less than that of
TFRC Veno in Figure 9(b), but the gap between the fastest
flow and the slowest flow of MULTFRC is 6 times larger than
that of TFRC Veno.
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We set the number of target flows to 8, and study the faimess
of the three protocols under different random packet losses.
As seen in Figure 10, TFRC Veno has a good faimess as in
TFRC (the fairness index is near 1). Both TFRC Veno and
TFRC have better fairness than MULTFRC.

Then we set the packet loss rate to 0.01, and vary the
number of target flows from 4 to 32. As the number increases,
TFRC Veno keeps a good fairness as in TFRC. However, the
fairness of MULTFRC becomes increasingly poor. Figure 11
plots these results.

3) TCP-friendliness: TCP-friendliness measures whether
the target flows are aggressive or not when competing with
TCP flows. It can be studied as follows: we first set up a

Two-state distribution cass
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Sequence number against time, 16 connections, packet loss rate is 0.01. (a) MULTFRC, £=0.967; (b) TFRC Veno, {=0.998.

certain number of TCP Sack flows over the link, and calculate
their average throughput 7j. Then we replace half of them
with the target flows and recalculate the average throughput
of the remaining TCP Sack flows T5. If % equals to 1, it
means Sack flows are not affected by the target flows, and
thus the target flows are totally friendly. The closer % is to
1, the more friendly the target flows are.

Figure 12 shows the results when there are totally 8 con-
nections, and random packet loss ranges from 0.0001 to 0.1.
Figure 13 plots the results under different numbers (ranging
from 4 to 32) of connections, where the random packet loss
rate is 0.01. As shown in these figures, TFRC Veno flows
are not harmful to the existing TCP Sack flows when random
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loss follows the exponential distribution (% is always around
1), and are acceptable when random loss follows the two-state

distribution (% is close to 0.9). On the other hand, MULTFRC

is always very aggressive in either cases (because % is less

than 0.6).

4) Sending Rate Variafion: As a transport protocol for
streaming multimedia transmission, the sending rate of the
target flows should not vary excessively. Here, we use the
coefficient of variation (CoV) to measure this variation. CoV
is defined as the standard deviation divided by the mean. The
smaller CoV is, the smoother the sending rate is.

In the experiment, a certain number of the target flows run
with the same number of TCP Sack flows. We count the

number of packets sent in the target flows within every 0.1
8 as samples, and finally calculate CoV of all these samples.
Figure 14 shows the result when 4 target flows run with 4
TCP Sack flows, and Figure 15 plots the result when the total
numbers of flows (half are the target flows) increases from 4 to
32 where the packet loss rate is 0.01. The results demonstrate
that MULTFRC has a smoother sending rate in most cases.
However, TFRC Veno can also keep CoV at small values,
which are almost the same as those of TFRC.

In summary, through the study in Section IV-A.1, TV-
A2 IV-A3, and IV-A4 we can conclude that, TFRC Veno
is an efficient enhancement of TFRC since the significant
throughput improvement in TFRC Veno does not sacrifice
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the other desirable features of TFRC such as fairness, TCP-
friendliness, and sending rate smoothness.

B. Internet Experiments

We use the same link between NTU and HKU as shown
in Figure 2(b). The TFRC/TFRC Veno client is at NTU and
the TFRC/TFRC Veno server is at HKU. At first, we report
the single connection results. We select six time slots (1 hour
period) over a day. In each time slot, we first let a TFRC flow
run from the server to the client for 5 minutes, and then let a
TFRC Veno flow run in the same direction for 5 minutes.
After a 2-minute break, we repeat such test. Thus totally
there are five tests in each time slot, and we calculate the

average results of TFRC and TFRC Veno, respectively. Three
measurements are calculated here: the number of packets sent,
the receiving ratio, and the CoV. Note that the packet size
is 500 bytes during transmission. We performed five days of
testing from Monday to Friday. Here we only present the
results of one day because the general trend of the results
in each day is similar. As depicted in Table I, TFRC Veno can
obtain throughput improvements of up to 70% over TFRC,
with the same receiving ratio.

We also test TFRC Veno's performance when coexisting
with one competing TCP Sack flow. We select five time slots
(1 hour period) over a day. In each time slot, we sequentially
let one THFRC Veno flow, one TFRC flow, and one TCP Sack
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TABLE I

INTERNET EXPERIMENT RESULTS ON SINGLE FLOW.

TFRC/TFRC Veno

Time Slots 9:00~-10:00 11:00~-12:00 13:00~-14:00 15:00-~:16:00 17:00~-18:00 22:00~23:00
Fackets Sent 29016.8/4128.6 | 2458.3/3249.7 | 2037.3/2981.3 | 2165.3/2640.0 | 3471.2/35074 | 1058.3/1812.7
Receiving Ratio 0.83/0.83 0.84/0.83 0.78/0.81 0.80/0.81 0.90/0.88 0.71/0.73
CoV 0.33/0.37 027/022 0.19/0.24 0.25/0.31 0.13/0.11 0.34/029
TABLE I
INTERNET EXPERIMENT RESULTS ON COEXISTING FLOWS.
Time Slots 10:30~11:30 13:30~14:30 16:30~17:30 19:30~.20:30 21:30~22:30
TFRC Veno/TCP Sack 1469.8/1132.3 | 1657.5/1253.3 | 2038.7/1202.5 | 2212.3/1357.8 | 1762.5/1224.5
TFRC/ACP Sack 1462.3/1340.0 | 1159.3/1179.8 | 1496.8/1343.3 | 1609.8/1525.3 | 1435.5/1349.0
TCF Sack/TCP Sack 1390.0/1021.8 | 1328.3/1347.5 | 1364.8/1404.8 | 1299.0/1312.8 | 1225.3/1458.8

flow run with an existing TCP Sack flow for 5 minutes. This
test will be repeated four times in each time slot, and we
calculate the average number of packets transmitted in each
flow. Note that all flows have same packet sizes of 500 bytes
and are transferred from the same server to the same client.
Since the general trend of the results in each day of the entire
five-day period is similar, we only present the results of one
day. As shown in Table II, the TFRC Veno flow does not
cause any bias degradation to the competing TCP Sack flow,
and obtains higher throughput while compared to the TFRC
flow.

V. CONCLUSION AND FUTURE WORK

TFRC is designed to provide optimal service for unicast
multimedia flow operating in the best-effort Intermet envi-
ronment. In wireless environments TFRC suffers throughput
degradation due to its embedded Reno equation. In this paper,
we replace the Reno equation with the Veno equation, which is
derived from the throughput model of TCP Veno, to enhance
TFRC performance. The comprehensive experiments show
that our enhancement, TFRC Veno, can improve TFRC per-
formarnce significantly over wireless networks for multimedia
transmission. As compared to another sender-modified en-
hancement MULTFRC, our proposal is more friendly to other
network traffic when achieving the same high throughput.

The performance of TFRC Veno depends on the Veno
parameter -y, which is a function of the parameters ¢, s,
and 8 in TCP Veno. In the future, we will study how
these parameters impact the performance of TFRC Veno, i.e.,
the throughput, faimess, TCP-friendliness, and sending rate
smoothness of TFRC Veno.
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