
A Feasibility Study for Power Management in LAN
Switches

Maruti Gupta
Computer Science Department

Portland State University�
mgupta � @cs.pdx.edu

Satyajit Grover
Computer Science Department

Portland State University�
satyajit � @cs.pdx.edu

Suresh Singh
Computer Science Department

Portland State University�
singh � @cs.pdx.edu

Abstract—We examine the feasibility of introducing power
management schemes in network devices in the LAN. Specifically,
we investigate the possibility of putting various components on
LAN switches to sleep during periods of low traffic activity. Traffic
collected in our LAN indicates that there are significant periods
of inactivity on specific switch interfaces. Using an abstract sleep
model devised for LAN switches, we examine the potential energy
savings possible for different times of day and different interfaces
(e.g., interfaces connecting to hosts to switches, or interfaces con-
necting switches, or interfaces connecting switches and routers).
Algorithms developed for sleeping, based on periodic protocol
behavior as well as traffic estimation are shown to be capable of
conserving significant amounts of energy. Our results show that
sleeping is indeed feasible in the LAN and in some cases, with
very little impact on other protocols. However, we note that in
order to maximize energy savings while minimizing sleep-related
losses, we need hardware that supports sleeping.

I. INTRODUCTION

Currently, power management schemes exist to minimize
the power consumption on devices such as desktops, note-
books and a number of other portable devices. The schemes
used for conserving power are generally implemented by the
operating system in the device and use various power-saving
techniques such as dynamic voltage scaling (DVS), slowing
clocks and using lower power-consuming modes as provided
by the underlying hardware. However, no such dynamic power
management schemes are available for internet devices such
as routers and switches at the system level.

In this paper, we look at the feasibility of introducing such
schemes in LAN switches. We chose to begin with LAN
devices and in particular LAN switches for several reasons:
LAN switches comprise the bulk of network devices in the
LAN and they also consume the largest percentage of energy
(see Table I in [5]). Increasingly, hosts are connected on
point-to-point links on switches in a star topology in order
to maximize throughput. Thus, a majority of interfaces on
LAN switches are directly connected to hosts, that intuitively
would have longer periods of low traffic activity than on
those interfaces that carry aggregated traffic from many hosts.
While the sleep models we propose in this paper can be easily
extended to be used for routers as well, a thorough analysis
of this approach for routers is beyond the scope of this paper.

Given the intention to save energy on switches, how do
we then proceed? In order to save energy in a device, we
can either turn it off or put it into deep sleep states where
most of the components are powered off or clocked at a lower

frequency at lower voltage levels. The one caveat is that these
approaches can only be used when the device is idle for some
minimal amount of time (very frequent power on/off actually
uses more power due to spikes in current draw when a device
is powered on and, furthermore, devices take a certain amount
of time to transition between sleep and wake states that could
result in packet losses). Turning our attention to the LAN
switch, we note that saving energy here translates to powering
off or putting to sleep LAN switch components, interfaces,
or entire switches. However, the side effect of putting ports
or switches to sleep is that layer 2 protocols running on
the switches may be negatively affected. Thus, implementing
power management schemes in a switch presents several
challenges: switches do not function in isolation and hence
slowing or powering down switches can result in performance
penalties in terms of network throughput and end-to-end delay,
or worse, packet loss. In addition, it may affect the functioning
of various network protocols at layer 2 and above.

In this paper, we examine the different questions arising
from the approach of putting switch components to sleep. Our
analysis of these questions has been organized into the follow-
ing sections. In section 3 we use traffic data from our LAN
to show that there are significant periods of inactivity in our
LAN that can be used for sleeping. In section 4, we develop
an abstract sleep model for a generic switch architecture and
use it to discuss algorithms for sleeping. Section 5 covers our
study of the performance of these algorithms on the traffic
data collected at various interfaces at different locations in
our LAN. We also use simulations to further study the costs
and benefits of sleeping. Section 6 deals with the impact of
sleeping on the various protocols running in the LAN and
LANs topologies to better facilitate sleeping.

II. RELATED WORK

There has been a great deal of work done on the design
of energy efficient protocols in wireless networks. Energy is
wasted in wireless networks for two primary reasons – idle en-
ergy consumption when the radio is idle and energy consumed
when the radio receives a packet that is not meant for it. The
former problem occurs in wired networks as well and is the
one we study here. The latter problem, on the other hand, is
a feature of the broadcast nature of the radio medium. The
approaches developed in the wireless world to reduce energy
consumption include distributed algorithms for sleeping (e.g.,

Proceedings of the 12th IEEE International Conference on Network Protocols (ICNP’04)
1092-1648/04 $ 20.00 IEEE

S-MAC [18]), or using TDMA like techniques (as in the Point
Coordination Function mode of 802.11b) where a base station
or cluster head schedules node transmissions and sleep periods
as in [4]. There are a great many techniques that have been
developed but we do not provide a summary here because they
are not directly relevant to our problem of deciding when to
send an interface on a point-to-point link to sleep.

[5] provides motivation for saving energy in the Internet
based on energy consumption data gathered by the US De-
partment of Commerce. The authors also suggest that sleeping
during periods of low activity is a good way to save energy.
However, the paper does not examine this idea in detail nor
does it provide any sleeping algorithms.

Previous work in the area of power dissipation in switches
has been devoted to the estimation of power consumption
in switch fabrics using various methods such as develop-
ing statistical traffic models[3] or various analytical models
[12], [10], [19], [16], [6]. Their focus has mainly been on
the various types of interconnection network fabrics used in
switches and an analysis of their power consumption. Power
management schemes have been proposed for interconnection
network fabrics which are deployed in routers, clusters, server
blades etc. These include using DVS with links in response
to network traffic [15] and using on/off links for network
power optimization [13]. In Peh et al [14], the authors present
a mechanism that monitors power utilization of links in an
interconnection network and regulates the network power
consumption by using power throttling techniques to limit
local power dissipation to a certain pre-determined power
budget.

The approach in all the work mentioned above, has been fo-
cused on the switching fabric component in order to minimize
low-power dissipation. In this paper, we present algorithms
that are designed to extend power-saving techniques such
as dynamic voltage scaling, powering down devices, to all
components of the switch hardware by incorporating the
algorithms in the device operating system. Thus, our work
here examines methods to reduce the power consumption in
switches1 dynamically using low-power states depending upon
traffic activity at each interface. We also analyze the impact
of sleeping on layer 2 protocols.

III. FEASIBILITY AND MODELS FOR SLEEPING

Examining traffic data from various locations within our
LAN, we observe significant periods of inactivity (barring
periodic Layer 2 and Layer 3 control packets) that lead us
to believe that sleeping is possible. In this section, we begin
by describing a small representative subset of this data and
then proceed to develop models for sleeping.

To answer the question – are there enough idle periods to
justify sleeping? – we collected data at a switch which has 82
ports running at 100Mbps organized in two modules and 30
Gigabit Ethernet ports organized in three modules (we describe

1We use the term switches from here onwards to mean layer 2 switches
used in LANs

the traffic characteristics and the LAN in more detail in section
V-A). This switch is connected to 2 routers as well as to other
switches and several end hosts. In terms of the spanning tree, it
is two hops from the root switch. Packet arrivals in/out of the
switch were logged on a workday over a period of two hours –
3am-5am and 8pm-10pm. The former represents a low activity
time for the switch and the latter represents a high activity time
(being a university campus, the network remains very busy in
the evening). For a typical port we compute the inter-activity
time which includes packet arrivals to a port from the wire as
well as from other ports for transmission. We then calculate
the Percentage of time that the inter-activity times exceed some
value, say � seconds. The left-hand plot in Figure 1 plots this
percentage as a function of � for a typical port. As shown in
the figure, for the Low activity times, 60% of the 2 hour period
saw inter-activity times greater than 20 seconds. For the high
activity period this value is about 10%. However, if we look
at the percentage of time the inter-activity times are greater
than 1 second for the high activity period, we get a very large
value of approximately 80%. These numbers suggest that the
port can be put to sleep for one or more seconds at a time
during low activity periods or for up to one second during
high activity periods.

The plot on the right shows the same data for the entire
switch. Unlike the case with an individual port, however, we
see that all inter-activity times are significantly smaller than
one second long and thus putting the entire switch to sleep
may not be feasible.

A. Models for Sleeping

Currently there exist no sleep models for switches. Thus,
for the purposes of this paper, we assume a typical switch
architecture to be modular with each module or line card
comprising of several interfaces and containing per-interface
processing elements and other relevant circuitry for each inter-
face. Considering the fact that current LAN switches support
enormous port densities (about 24-48 100Mbps interfaces per
module), each interface in a line card is therefore provided
with significant processing power as well as memory buffers
to enable high-speed packet forwarding. In line with current
trends in hardware design for high-speed routers and switches,
where the packet processing functionality is being pushed out
to the line cards [23], [21], for this paper we assume that line
cards contain most of complexity of the device and this is
where we look to put components to sleep.

A typical line card contains several components, each of
which can be put into one or more power saving modes.
Thus, the CPU can be clocked at lower rates, the memory
(at each buffer or the forwarding cache, etc.) can each enter
one or more sleep states, if the line card has a switching
fabric, either portions of it can be put to a sleep state or
the whole fabric can be clocked slower [6], and so on. Let
us represent the sleep states of each device on the line card
as a linear sequence

�
Wake � � � � � 	 � � � � � � � � Off� where � � is

a deeper sleep state than � � � � (e.g., a device may operate at
different clock frequencies, each then denotes a sleep state in

2
Proceedings of the 12th IEEE International Conference on Network Protocols (ICNP’04)
1092-1648/04 $ 20.00 IEEE

0 2 4 6 8 10 12 14 16 18

x 10
1

0

10

20

30

40

50

60

70

80

90

100
Individual Switch Interface

Interactivity time (seconds)

P
er

ce
nt

ag
e

of
 2

 h
ou

rs Low activity time

High activity time

60% of time has interactivity
time greater than 20 seconds

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

10

20

30

40

50

60

70

80

90

100
Activity at Switch

Interactivity time (seconds)

P
er

ce
nt

ag
e

of
 2

 h
ou

rs

Low activity time

High activity time

Fig. 1. Interactivity times during high activity and low activity times.

our usage). Associated with each state � � is a tuple � power
draw, � � � , � � � , where � � � denotes the transition time from
state � � to � � � � (we assume that going to deeper sleep states
is instantaneous), and � � is the spike in power draw when
this transition occurs ([11]). Given this representation for each
device on the line card, we can construct the set of sleep states
for the line card as a whole as a cross product of the sleep
states of each of the individual devices. While complete, this
representation is unnecessarily complex because most of the
sleep states will be meaningless from a functional standpoint
and some combinations will not be supported by the hardware.
For instance, the cross product gives us a state where the CPU
is in Wake while all other devices are in their deepest sleep
state, and so on. Therefore, we need to significantly pare down
this representation to obtain more realistic sleep models for the
line card.

As noted above, the sleep model for a line card is obtained
from the sleep models of its constituent parts. While it is
a research task to develop appropriate sleep models for line
cards, in this section we develop a simple sleep model of an
interface for illustrative purposes. The model we develop is
based on the functionality of the interface in each of its sleep
states. In other words, the sleep model is based on varying
degrees of services offered, which is similar to what is used
in the ACPI standard [7].

Figure 2 shows the three sleep states of our first model
(sandwiched between Off and Wake states) where the energy
draw in the states decreases as we go from Wake to Off. One
property common to all three sleep states is that interface state
is preserved, i.e., the station cache, learning bridge table, etc.
are all stored even during sleep.

� Simple Sleep: In Simple Sleep, the interface sets a sleep
timer2, and only wakes up when the timer expires. All

2The value of this timer can be set so as to ensure that the interface wakes
up for periodic traffic (e.g., the Hello packet of STP). However, non-periodic
traffic (data packets or ARP, etc.) cannot be predicted and will be lost if they
arrive during a sleep.

Other Possible
Transitions
(not shown)

Incoming packet is buffered
and wakes up switch interface
(receiver circuits and input
buffer are On)

Incoming packet is lost
but wakes up switch interface
(receiver circuits are On)

Incoming packet is lost
Timer wakes up switch interface

Off

Wake

Switch/interface remembers
state in all three sleep states

HABS

HAS

Simple

Fig. 2. Function-based Sleep Model States.

packets arriving during the sleep period are lost. Barring
the energy required to maintain interface state information
in memory, all other components of the interface are
powered off or put into very low energy states.

� HAS: (Hardware Assisted Sleep) is a step up in function-
ality. Here, an incoming packet wakes up the interface
but is then lost. Thus, the interface can wake up either
when the sleep timer expires or when a packet arrives.

� HABS: (Hardware Assisted Buffered Sleep) is the most
sophisticated sleep state. Here, an incoming packet wakes
up the interface and is buffered. Comparing HAS and
HABS, we note that HABS is an extension of HAS where
we require the input buffer to remain powered on so as
to buffer incoming packets. Thus, in HABS, the input
circuits for receiving, demodulating, and other receiver-
based functions are powered on whereas in HAS they are
not. In HAS, we only require that the interface be able
to detect activity on the wire/fiber. This then causes the
remainder of the interface to be woken up.

We assume that transitioning from a deeper sleep state to
a lighter sleep state (HABS to HAS, for example) takes a

3
Proceedings of the 12th IEEE International Conference on Network Protocols (ICNP’04)
1092-1648/04 $ 20.00 IEEE

non-zero transition time � and results in a spike in energy
consumption (see [11] for an example from the wireless
domain). On the other hand, transitioning to deeper sleep states
is assumed to be instantaneous and does not use energy.

B. Implications of Sleeping

Sleeping has implications for Layer 2 and above protocol
functioning as well as for traffic behavior. We defer a discus-
sion of the protocol-related issues to later sections (section VI)
and focus on the traffic issues here.

� Simple Sleep: Since all packets are lost, we can envision
disastrous performance for application and higher-layer
protocols. For instance, a TCP connection will generate
retransmissions which has two effects – first, the end
application will see poor throughput and second, the
energy savings we get by sleeping will probably be offset
by the additional cost of retransmissions. This limits our
choices for using this state to the following:

– Interface connected to end host: ACPI – Advanced
Configuration and Power Interface – for personal
computers enables the operating system to run so-
phisticated power management algorithms. Imagine
extending this functionality (call it Extended ACPI)
where the host informs the switch interface it is
connected to when it is going to sleep. If this
technology existed, then the switch interface could
very easily enter Simple Sleep. The reason for using
Simple Sleep rather than Off is that interface state
is preserved in Simple Sleep which ensures correct
protocol behavior. In addition, we also need to ensure
that connectivity is not lost when the host comes
back on.

– Interfaces connecting switches: Interfaces connecting
two switches or switches to servers can be put
to Simple Sleep only if we can guarantee that no
packets will be sent to a sleeping interface. This can
be accomplished by having some form of LAN-wide
protocol that coordinates sleeping and ensures that
all data paths traversing a sleeping interface have
buffering available. For example, an upstream switch
could buffer packets for its downstream neighbor for
the sleep duration.

� HAS: This state is more amenable to being used on
interfaces with less predictable traffic than Simple Sleep
because an incoming packet wakes up the sleeping inter-
face and thus subsequent packets will not be lost. While
better than Simple Sleep, however, HAS still loses some
number of packets which will negatively impact protocol
performance. One way around this is for the upstream
interface (of a sleeping interface) to introduce a dummy
packet ahead of the packet to be sent to its sleeping
neighbor. By setting an inter-packet delay equal to the
time to transition to the Wake state, the dummy packet
can wake up the neighbor in time to receive the data
packet. The obvious drawbacks include added traffic and
increased processing.

� HABS: Unlike HAS, the HABS state does not require
dummy packet transmissions on a link or the exchange
of sleep timers between neighboring interfaces because
the packet which wakes up the interface is not lost.
This benefit, however, comes at the cost of lower energy
savings as compared with Simple Sleep and HAS and
the added delay (equal to the HABS – Wake transition
time) for each packet that wakes up an interface (HAS
also introduces a delay while Simple Sleep discards the
packet).

Off

Wake

HABSSimple

Timer

Packet Arrival
or Timer

Idle

Extended
ACPI

Fig. 3. Simplified Sleep Model.

Based on the above discussion, it appears that a simpler
sleeping model that eliminates HAS and restricts state transi-
tions, as shown in Figure 3, is more appropriate.

1) For switch interfaces connected to end hosts (user
machines), we can use Simple Sleep, particularly in
combination with some form of Extended ACPI where
the host informs the switch that it is going to sleep.

2) For switch to switch or switch to router interfaces,
we use HABS because it simplifies the implementation
of sleep algorithms by reducing coordination between
switches. We use HABS for switch interfaces connected
to hosts if the hosts do not use Extended ACPI or similar
power management approaches.

In the next section we develop sleep algorithms using this
simplified sleep model.

IV. ALGORITHMS FOR SLEEPING

Three questions any sleeping algorithm needs to answer are:
� When can an interface go to sleep
� Length of the sleep interval, � � (either in Simple Sleep

or HABS)
� Length of wake interval between consecutive sleeps, � �

A. Wake – Simple Sleep

As shown in Figure 3, we propose that the Simple Sleep
state only be used on interfaces connected to end hosts which
use technology such as Extended ACPI. Thus, the switch
interface goes to sleep when the end host goes to sleep and it
wakes up periodically (every � �) to check to see if the host has
woken up. If it has, then the interface remains awake until the

4
Proceedings of the 12th IEEE International Conference on Network Protocols (ICNP’04)
1092-1648/04 $ 20.00 IEEE

host falls back to sleep again. Thus, the answer to the three
questions posed above for the Wake – Simple Sleep transitions
is simple and the only issue is the selection of � � and � � .

How does the switch interface know that the host has woken
up? We propose the following simple mechanism. After the
end host wakes up, the network interface on the host begins
sending packets to the switch interface with some period � .
Then, if � � � � , the switch will receive at least one such packet
during its wake interval and can then remain awake until the
host’s network interface informs it that the host is going back
to sleep. Given this mechanism, we can see that the selection
of � � is more of a policy question than an optimization one.
For instance, if � � is very long, then the end host will remain
disconnected from the LAN (because the switch interface is
asleep) for long enough that the user will notice. This is clearly
not desirable and we can envision the system administrator
setting an appropriate � � value.

B. Wake – HABS

We next look at the Wake – HABS transitions which can be
used for all kinds of devices. The following Optimal Algorithm
illustrates the main ideas behind the sleeping algorithm.

� The decision on whether to sleep is made immediately
after processing the last packet in the buffer.

� Say � is the time to the next packet arrival. � � and
� � denote the energy consumed by the switch interface
in Sleep state and in the Wake state. � � is the energy
consumed when the interface transitions from the sleep
state to the wake state (� is the time taken by this
transition). � � is the energy consumed by the end host’s
network interface to transmit the wakeup packets to the
switch interface. Then,

– if � � 	 � � � � � � � �
� � � the interface goes to sleep

for length of time � � � � 	 � . � � is the time to
process the incoming packet at time �

– Otherwise, the interface stays awake.

Deriving from this optimal algorithm, we can define two
simple practical algorithms as follows:

1) Estimated Algorithm: We use an estimator for �� (mean
time to next packet) and sleep if,

� �� 	 � � � � � � � � �� � � (1)

In this paper we use the EWMA[24] (exponentially
weighted moving average) filter,

�� � � � �� � � � � � 	 � � � � (2)

where � � is the observed value and � � � , � is a filter
specific constant. Other estimators can also be used but
as our results show, this filter works quite well.
Unlike the Optimal Algorithm, the interface sleeps until
woken up by an arriving packet and it then stays awake
until there are no more packets to process, whereupon it
makes the sleep decision again using �� . This implies that
each packet arriving to a sleeping interface will incur an
additional delay of � .

2) Estimated & Periodic Algorithm: Since layer 2 and 3
protocols generate periodic traffic (e.g. configuration
BPDUs in STP), we exploit this periodicity to make
more informed sleep decisions.

� We maintain timers for all periodic traffic. After
processing the last packet in the buffer, we obtain

 , the time to the next periodic packet, by using the
periodicity of the various protocols and knowledge
of when we last saw a periodic packet from those
protocols.

� As in the Estimated case, we determine �� for the
non-periodic traffic.

The interface sleeps if,

� " $ & � �� �
 � 	 � � � � � � � � " $ & � �� �

 � � �

V. ESTIMATED ENERGY SAVINGS IN OUR LAN

In this section we study the energy savings obtainable if
interfaces use HABS. We do not consider the Simple Sleep
state here because none of the end hosts ever went to sleep and
therefore Simple Sleep would show large number of packet
losses.

In order to determine the energy savings possible by sleep-
ing, we used the following metric:

+ �
,

,
�

if + . � then we get energy savings using sleep otherwise,
sleeping results in energy loss. Here

,
� denotes the energy

consumed if we use sleep algorithms and
,

denotes the energy
consumed without sleeping.

To get expressions for
,

and
,

� , assume that over some
length of time / , 0 packets are processed. Then,

, � � � � / 	 0 � 3 � 0 � 3 � 3

(� 3 – time to process a packet and � 3 – energy to process
packets) where the first term indicates the energy during idle
periods when the interface is awake but not doing anything and
the second term denotes the processing cost for the 0 packets.
To compute

,
� , assume that the total time spent sleeping is

/ � . Then,
,

� � � � / � ,
� � / 	 0 � 3 	 0 � 	 / � � 0 � � � 0 � 3 � 3

where the terms are, energy spent sleeping, energy spent in
wake state (but idle), energy spent to wake up 0 times, and
energy spent to process 0 packets. Note that no packets are
lost in HABS which is why the 0 � 3 � 3 term appears in

,
� .

It is easy to see that + is affected by the values for
� � � � � � � � � � 3 and � . Unfortunately, there are no values avail-
able for these constants for present-day switches (with the
exception of � � , the other values are not available because
switches do not support sleep states as we have described
them). Given this constraint, we decided to use ranges of
values using the wireless domain and network adapters im-
plementing ACPI standards as our guide. 802.11b radio cards
using the Prism chipset [1] take 5ms to transition up. from

5
Proceedings of the 12th IEEE International Conference on Network Protocols (ICNP’04)
1092-1648/04 $ 20.00 IEEE

sleep to wake state while the radio described in [11] takes
0.5ms. The RFM 1000 radio used in the Motes sensor nodes
[2] takes between 11 and 20ms to wake. For network adapter
cards, the power consumed during idle state is given as 0.5W
and the power consumption in the deepest sleep state is
0.17W [22]. In terms of energy draw � � during the wake
up process, [11] reports a value equivalent to the energy used
for transmitting a packet (i.e., � � � � �). Finally, the RFM
1000 radio reportedly uses 1/1000th the energy in sleep as
compared with idle whereas, the 802.11b Orinico card uses
1/15th the value, [8].

Given this, we propose using the range � � � � � � � � � � �
sec for the transition from HABS to Wake time to study the
impact of � on energy savings. For the power draw, we use

� � � � Watt, � � � � � � W and � � � � � � 	 W for most studies
and � � � � � � W for one study just to show the dependence of
sleeping power draw on overall energy consumption (note that
the ratio � � � � can be varied in addition to varying � but we
saw little that could not be observed using the smaller set of
values we have presented above).

To illustrate the impact of different � � values (for a fixed
� �) we return to the example discussed in Figure 1. In Figure
4 we plot
 � �

� �
for the Optimal Algorithm as a function of

� for the High activity and Low activity times from Figure 1.
We make the following observations:

� In general, we get lower energy consumption if we use
sleeping. However, the amount of energy savings depend
on the load with low activity periods giving larger energy
savings. This is not surprising because the interface is off
for longer periods.

� The difference between � � � � � � and � � � � � � is
dramatic but also makes sense. If � � is 0.5, sleeping is
only beneficial if the interactivity times are large enough
to justify sleeping. Otherwise, the interface stays awake.
However, even here we notice a 2x improvement over not
sleeping.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
1

2

3

4

5

6

7

8

9

10
Individual Switch Interface

Time to wake up (seconds)

E
ne

rg
y

w
ith

 n
o

S
le

ep
in

g/
E

ne
rg

y
w

he
n

S
le

ep
in

g

e
S
=0.5

e
s
=0.1

Low activity period

High activity period

Low activity period

High activity period

Fig. 4. Ratio of energy without sleep to optimal sleep from Figure 1.

A. Results

switch FA switch FB

router N

.....

LAN 1 LAN 2

LAN 5

LAN 4

stp root switch

switch F20

router P LAN 6

Host Y Host M

LAN 3

Internet

Fig. 5. Schematic of our LAN.

In order to evaluate the two algorithms based on estimating
�� , we collected traffic data in our network (see Figure 5) at the
interfaces indicated. The traffic was collected at two switch –
host interfaces where we looked at the switch interface (Y–
FA and M–FA), one switch – switch interface (FA–FB), and
one switch – router (FA–P) interface. As we can see, switch
FA is 2 hops away from the root switch. This switch is the
one that is described in section III and Figure 1. Data was
collected during light activity times (3am-5am) as well as
during heavy activity times (8pm-10pm) for two hours on a
regular workday using tcpdump for gathering traces and then
using the ethereal tool for analysis of the traces. A summary
of the traffic collected at each of these interfaces is detailed
in Table I.

From this table we can make the following observations:
� There are three protocols that generate periodic traffic

– STP Hello, OSPF Hello, and CDP (Cisco Discov-
ery Protocol). In addition, there are various application
layer protocols that also generate periodic traffic (e.g.,
IPX/SDP, Microsoft clients, etc.).

� We selected two hosts to reflect different types of be-
havior. Host M is a Unix server that sees a great deal
of RPC traffic (primarily because of NFS) and hence the
percentage of periodic traffic is very small. Furthermore,
there is little difference between light and heavy periods.
Host Y, on the other hand, is a Windows machine used by
an individual user and hence we note the big difference
between light and heavy periods. Neither machine sleeps
and furthermore, host Y shows traffic even without a user
present because of periodic Windows functions like the
Outlook mail client, etc.

� For host Y, periodic traffic dominates during light periods
– STP traffic accounts for 74.1% traffic during light
periods as opposed to 4.76% during heavy loads. Thus,
we would expect the Estimated & Periodic algorithm to
perform better than the Estimated algorithm.

� The switch–router interface and switch–switch interface
show little traffic variation between different times of day.
In addition, for these two interfaces, the percentage of
periodic traffic is negligible.

6
Proceedings of the 12th IEEE International Conference on Network Protocols (ICNP’04)
1092-1648/04 $ 20.00 IEEE

Host Y Host M Switch FB Router N
Link Speed 100 Mbps 100 Mbps 1 Gbps 2 Gbps
Traffic Type Light Heavy Light Heavy Light Heavy Light Heavy
Total Packets 7636 77164 122622 107819 521611 617698 188803 634020
Ethernet (%) 95.14 99.69 99.8 99.65 100 100 100 100
ARP (%) 0.83 0.06 0.14 0.13 0.07 0.79 37.25 18.37
STP (%) 74.10 4.76 3 5.25 negligible negligible
CDP (%) 2.44 0.16 0.1 0.17 negligible negligible
IP (%) 12.93 94.4 96.5 93.7 90.9 91.4 47.4 81.63

Breakdown of IP traffic by higher layer protocols
UDP (%) 1.15 0.25 90.97 85.7 87.96 89.7 29.1 11.4
RPC (%) 0 0 90.5 84.67 87.2 89.3 0 0.03
TCP (%) 7.56 93.68 5.24 7.84 2.52 1.46 13.72 58.67
ICMP (%) 4.22 0.46 0.26 0.24 0 0 1.39 1.51
OSPF (%) 0 0 0 0 0.26 0.14 1.35 0.02

Others (%) 4.86 0.31 0.2 0.35 0 0 0 0

TABLE I

TRAFFIC CHARACTERISTICS.

Let us study the performance of the Optimal, Estimated,
and Estimated & Periodic algorithms for the data collected.
The parameter settings we use are:

� �

Recall that � is the weight used in equation 2. The value of
� � is derived based on the speed of the interface and packet
size (e.g., a 512 byte packet will take 512x8/100 = 40 � s on a
100Mbps interface). Note that we only used the Wake – HABS
transitions from Figure 3 because none of the hosts sleeps and
we therefore cannot use Simple Sleep. Figure 6 plots � vs �

for the four interfaces (top left is the Y – switch, top right
M–switch, bottom left is switch – switch, and bottom right
is switch – router). Each plot shows the data for the three
algorithms for light and heavy load periods (a total of six
curves per plot).

1) We observe that the two algorithms that estimate �

perform almost as well as the Optimal algorithm in
all cases. Furthermore, the difference between the Es-
timated & Periodic and Estimated algorithms is almost
non-existent implying that we can use the simpler Esti-
mated algorithm in practice.

2) Sleeping appears to be beneficial in all cases, i.e., � � � .
While we expected this for the Optimal algorithm, this
result is somewhat surprising for the two algorithms
based on estimating � since this is the easiest statistic
to obtain. One implication of this is that the additions
required to switch hardware are simple enough (i.e.,
determine � and implement HABS) to be justified by
the large energy savings possible.

3) For smaller � the gains are much greater. This is ex-
pected because the wakeup cost � � � is correspondingly
smaller allowing interfaces to sleep more often (and for
shorter periods).

4) We examine the impact of selecting different values for
� (equation 2) on these results in Figure 7. We plot
the impact of selecting � � � � � � � � � � � � � � � � � on the
Estimated algorithm for the switch – switch and switch

– router interfaces during heavy loads. It is interesting
to observe that an appropriate selection for � makes a
significant difference in performance of the Estimated
algorithm (as compared to Optimal).

Our results indicate a clear potential for saving energy in the
LAN by adopting simple energy saving algorithms. However,
the actual extent of these savings will be affected by the
hardware which determines the values of the various constants

� � � � � � � � � � � � � .

B. Simulation Results

While interesting, the results presented above have two
gaps:

1) The results rely on interface-specific traffic traces and
do not look at sleeping behavior on interfaces in the
network as a whole. For instance, if a port is a for-
warding STP port versus a blocked one, the results can
vary. Also, the results post-processed the data using the
algorithms presented.

2) Thus far, we have only considered Wake – HABS
transitions. What happens if the switches do not have
the capability for HABS but do have the ability to go
into Simple Sleep?

To address these two issues, we incorporate the Estimated &
Periodic algorithm into Opnet and study the energy savings
obtainable using HABS. For Simple Sleep, on the other hand,
we used the Estimated algorithm with a change described later.
In addition, for Simple Sleep, we also calculate the percentage
of packets lost.

We use the topology shown in Figure 8 in which there are
six switches (sw0 is the root switch). The figure shows the
location of the various servers and hosts in the LAN as well.
We run the STP protocol in addition to different data streams.

Data for the simulations is generated using Markov Modu-
lated Poisson Process (MMPP) sources at each end-host. For
this, we implement a 2-state MMPP model in Opnet The
parameters for the MMPP models are selected based on an
analysis of traffic traces collected in our own LAN (and used

7
Proceedings of the 12th IEEE International Conference on Network Protocols (ICNP’04)
1092-1648/04 $ 20.00 IEEE

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11
1

2

3

4

5

6

7

8

9

10
Host Y to Switch Interface

Time to wake up (seconds)

E
ne

rg
y

w
ith

 n
o

S
le

ep
in

g/
E

ne
rg

y
w

he
n

S
le

ep
in

g

Light

Heavy

Optimal, Estimated, and
Estimated & Periodic

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11
4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9
Host M to Switch Interface

Time to wake up (seconds)

E
ne

rg
y

w
ith

 n
o

S
le

ep
in

g/
E

ne
rg

y
w

he
n

S
le

ep
in

g

Light & Heavy
All Algorithms

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11
1.5

2

2.5

3

3.5

4

4.5

5

5.5
Switch to Switch Interface

Time to wake up (seconds)

E
ne

rg
y

w
ith

 n
o

S
le

ep
in

g/
E

ne
rg

y
w

he
n

S
le

ep
in

g

Light

Heavy

Optimal, Estimated, and
Estimated & Periodic

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11
1

1.5

2

2.5

3

3.5

4

4.5
Switch to Router Interface

Time to wake up (seconds)

E
ne

rg
y

w
ith

 n
o

S
le

ep
in

g/
E

ne
rg

y
w

he
n

S
le

ep
in

g

Light

Heavy

Optimal, Estimated, and
Estimated & Periodic

Fig. 6. Energy savings for various interfaces at light and heavy loads.

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11
1

1.5

2

2.5

3

3.5

4

4.5
Switch to Switch Interface: Heavy

Time to wake up (seconds)

E
ne

rg
y

w
ith

 n
o

S
le

ep
in

g/
E

ne
rg

y
w

he
n

S
le

ep
in

g

7/8

5/8

3/8

Optimal and 1/8

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11
1

1.5

2

2.5
Switch to Router Interface: Heavy

Time to wake up (seconds)

E
ne

rg
y

w
ith

 n
o

S
le

ep
in

g/
E

ne
rg

y
w

he
n

S
le

ep
in

g

7/8

5/8

3/8

Optimal and 1/8

Fig. 7. Effect of varying � in equation 2.

in previous discussions). The means are given in Table II.
Each end-host generates packets at random intervals which

are uniformly randomly sent to all the servers. The simulation
time is 2 hours with the initial 30s used for configuring STP.

8
Proceedings of the 12th IEEE International Conference on Network Protocols (ICNP’04)
1092-1648/04 $ 20.00 IEEE

Data traffic starts after 40s. Packet size used is 512 bytes and
all links are 100Mbps.

sw0

sw1
sw2

sw3
sw4

sw5

server1

server2

server3

server4 server5

mmpp1
mmpp2

mmpp3

mmpp4

mmpp5

mmpp6

mmpp7

mmpp8

mmpp9

mmpp10

mmpp11
mmpp12

mmpp13 mmpp14

mmpp15

mmpp16

mmpp17

mmpp18

mmpp19

mmpp20

mmpp21

mmpp22 mmpp23 mmpp24 mmpp25 mmpp26

mmpp27

mmpp28

Fig. 8. Simulation topology.

1 2 3 4 5 6 7 8 9 10

x 10
−3

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6
Switch Interfaces, HABS Simulation

Time to wake up (seconds)

E
ne

rg
y

w
ith

 n
o

S
le

ep
in

g/
E

ne
rg

y
w

he
n

S
le

ep
in

g

Switch 0 to Switch 4
Switch 2 to mmpp 22

Fig. 9. Energy savings in Simulation using HABS.

Figure 9 plots � versus � (using HABS) for interfaces
connecting the root switch sw0 to sw4 and the interface
connecting sw2 to the end host denoted as mmpp22. Both
these ports are forwarding ports in STP. We used a value
of � � � � � for these runs. The values of the � � � � � � � �
energy parameters were kept the same for both types, but
the transition times and the sleep-to-wake transition energy
were different. Since Simple Sleep is a deeper sleep state than
HABS, it consumes less power than HABS, but takes longer to
transition from sleep to wake state. Thus, we used � � � � � �

�

for Simple Sleep and � � � � � �
�

for HABS. For HABS,
transition time values were �

and for Simple Sleep, � .
The energy savings for the sw0–sw4 interface vary from

over 2x to 1.8x while the savings range from 2.5x to 2x for
the other interface. This difference is explained by the fact the

sw0–sw4 sees far more traffic than the other interface since it
is connected to the root switch sw0.

Figure 10 plots the energy savings when we use Simple
Sleep instead of HABS. The algorithm used here is a variation
of the Estimated Algorithm. As in that algorithm, the decision
to sleep is made based on equation 1. The length of the sleep
interval � � �
� � � . We do not set a value for � � rather,
after waking up, the interface remains awake until the next
packet is processed after which it uses equation 1 to make
a sleep decision again. We see that the interface connecting
sw2 to mmpp22 shows between 4.5x and 2x improvement
in energy whereas the sw0 to sw4 interface shows 2.2x to
1x improvement. Suprisingly, Simple Sleep seems to perform
better than HABS initially, though it degenerates to worse
performance than HABS as the time to wake up increases. One
of the reasons to explain the lower energy savings for HABS
may be that HABS consumes more power during its sleep
state, thus leading to lower energy savings overall.The low
energy benefits may also lead to fewer sleep cycles since the
estimated interval must be large enough to make it worthwhile.
Interestingly, the packet loss rates observed were less than
7.5% for both interfaces3. The reason the percentage of lost
packets decreases with increase in � is that the interface stays
awake more frequently (as per equation 1) and only sleeps
when
� is large.

In summary, we note that using either sleep state (HABS or
Simple Sleep) yields large reduction in energy consumption.
Simple Sleep, however, does drop packets with the expected
consequences for higher layer protocol behavior.

VI. IMPACT OF SLEEPING ON PROTOCOLS AND TOPOLOGY

DESIGN

By and large, we can claim that using HABS does not affect
the higher layer protocols in any way. However, using HABS
will result in a certain amount of delay that depends upon the
transition time from sleep to wake. It will also add a certain
amount of queuing delay due to the accumulation of packets
in the buffer while the interface is still waking up. This delay
may affect the performance of the network, and must be further
examined. Now, if Simple Sleep is the only available sleep
option, then what impact will using this sleep state have on
these protocols? This is the question we examine next in this
section.

For protocols that emit periodic messages, e.g.,in STP
(Spanning Tree Protocol) configuration BPDUs are typically
sent every 2 seconds, we can adjust the sleep timers appro-
priately and thus, minimize the impact of packet losses due
to sleeping. This adjustment must be finely tuned else it can
result in significant penalty in terms of energy losses as well as
network performance. For example, frequent loss of configu-
ration BPDUs can trigger a recomputation of the spanning tree
which would increase energy consumption and result in loss of
connectivity during that period. For asynchronous protocols,

3Note that we did not use TCP traffic and thus there were no retransmissions
due to the lost packets.

9
Proceedings of the 12th IEEE International Conference on Network Protocols (ICNP’04)
1092-1648/04 $ 20.00 IEEE

Model used at each host
State 1 (ON) State 2 (OFF)

Inter-activity time Duration Inter-activity time Duration
(Poisson) (Exponential) (Poisson) (Exponential)

High Load 0.1s 0.5s 14.67s 15.0s

TABLE II

MMPP PARAMETERS.

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11
1

1.5

2

2.5

3

3.5

4

4.5
Switch Interfaces, Simple Sleep Simulation

Time to wake up (seconds)

E
ne

rg
y

w
ith

 n
o

S
le

ep
in

g/
E

ne
rg

y
w

he
n

S
le

ep
in

g

Switch 0 to Switch 4
Switch 2 to mmpp 22

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11
3

3.5

4

4.5

5

5.5

6

6.5

7

7.5
Switch Interfaces, Simple Sleep Simulation

Time to wake up (seconds)

P
er

ce
nt

ag
e

of
 P

ac
ke

ts
 L

os
t

Switch 0 to Switch 4
Switch 2 to mmpp 22

Fig. 10. Energy savings and packet loss using Simple Sleep.

we do have a problem since the sleep timers cannot be adjusted
as predictably, thus leading to a possibly greater number of
packet losses.

Consider, for example, ARP requests. If the switch port
that connects to the destination host is in sleep state then
the sleeping port can be woken up by the switch when it
detects a broadcast packet directed to the LAN on which the
sleeping port resides. This will also mean waking up all other
sleeping ports on the same LAN. If, on the other hand, the
sleeping switch port is on the forwarding path to other hosts on
a different segment of the same LAN then using Simple Sleep
will result in the ARP packet being lost. A similar discussion
holds for other asynchronous protocols running on top of IP,
which includes the impact of lost packets on performance of
the TCP protocol.

A. Impact of Network Topology and VLANs on Sleeping

In order to maximize energy savings (using either or both
Simple Sleep and HABS), we need to pay attention to the
network topology. It is reasonable to assume that the network
has several redundant paths (for fault tolerance and load
balancing), then it is possible to identify the individual loads
during off-peak hours and aggregate the traffic load so as to
use only some of the paths and put the rest of them to sleep.
However, this can be hard to do if the topology does not allow
for aggregation of loads along a certain path due to constraints
such as the existence of multiple instances of the spanning tree
protocol for each configured VLAN in the network.

For example, in most cases, switches do not have multiple
links between them and if they do, only one link would be set
to forwarding state by the Spanning Tree Protocol in order
to avoid loops. However in certain cases, it is possible to
have them both in forwarding state. For example, consider
the following simple network shown in Figure 11, with two
switches and two links between them. Switch A is connected
to hosts 1-10 and switch B is connected to hosts 11-20.
Assume, hosts 1,3,5,15,17,20 belong to VLAN 100 and hosts
2,4,6,12,14,16 belong to VLAN 200. Each VLAN runs its own
instance of STP. In this case, it is possible that the STP for
VLAN 100 may select link 1 to be in forwarding state and the
STP for VLAN 200 would select link 2 for the same purpose.

Thus, even if a single link can accommodate the traffic
activity for both VLANs, it may not be possible to aggregate
traffic on one link due to the way the port states are set up by
each STP.

While it is reasonable to use both links when traffic loads
justify it, in periods of low traffic activity we could configure
the path costs of each link such that only one of them would be
selected by all instances of the STP running for each VLAN.
This would allow the other link to be put to sleep and thus
decrease the overall power consumption of the switch.

VII. CONCLUSIONS

Our study clearly shows that sleeping in order to save energy
is indeed a feasible option in the LAN. Our initial idea of
using Simple Sleep for host-to-switch interfaces along with
Extended ACPI would result in very good energy savings

10
Proceedings of the 12th IEEE International Conference on Network Protocols (ICNP’04)
1092-1648/04 $ 20.00 IEEE

Switch A Switch B

2 4 6 12 14 16

7
8
9
10

1 3 5 15 17 20

11
13
18
19

Link 1

Link 2

VLAN 100

VLAN 200

Fig. 11. Impact of VLANs on sleeping.

as well as minimum or even, no packet loss. If appropriate
hardware support is provided (in the form of implementing
HABS) then the extent of energy savings for other interfaces
can be quite significant. Considering the interaction between
sleeping and protocols, we note that there is a need to utilize
topologies that allow more ports to sleep. Furthermore, since
different VLANs can potentially have different spanning trees,
the likelihood of a port showing low activity is reduced. We
suggest that during periods of low load, the VLANs recompute
their spanning trees so that the use the same ports and links
as far as possible. This strategy makes sense because, during
low load periods, there is no need to do load balancing across
links (as is done in most topologies today).

In our future work, we will examine the problem of de-
veloping better sleeping algorithms to maximize sleeping. We
also plan to study the impact of sleeping on routing protocols
as well as higher-layer protocols such as TCP.

REFERENCES

[1] Prism Power Management Modes, http:// www.intersil.com.
[2] http:// www.xbow.com/ Products/ Wireless Sensor Networks.htm
[3] Wassal, A.G.;Hasan, M.A. ”Low-power sytem-level design of VLSI

packet switching fabrics” CAD of Integrated Circuits and Systems, IEEE
Transactions, on June 2001

[4] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris, “SPAN: An
energy-efficient coordination algorithm for topology management in ad
hoc wireless networks”, ACM MOBICOM 2001, July 26 – 21, 2001,
Rome, Italy.

[5] M. Gupta and S. Singh, “Greening of the Internet”, ACM SIGCOMM’03,
Karlsruhe, Germany, August 2003.

[6] G. Essakimuthu et al. “An analytical power estimation model for cross-
bar interconnects”, Technical Report CSE-02-009, Penn state University,
Department of Computer Science and Engineering, 2002.

[7] http://www.acpi.info/index.html

[8] L. Feeney and M. Nilsson, “Investigating the Energy Consumption of
a Wireless Network Interface in an Ad Hoc Networking Environment”,
Proc. IEEE INFOCOM 2001, April 22–26, 2001, Anchorage, AK.

[9] M. Kim and B. Noble, “Mobile Network Estimation”, Proc. ACM
MOBICOM 2001, Rome, Itlay.

[10] D. Langen, A. Brinkman, and U. Ruckert, ”High level estimation of
the area and power consumption of on-chip interconnects”, IEEE Int’l
ASIC/SOC Conference, 2000.

[11] R. Min et al, “Energy-centric enabling technologies for wireless sensor
networks”, IEEE Wireless Communications, August 2002, pp. 28 – 39.

[12] C. Patel, S.Chai, S. Yalamanchili, D. Shimmel, ”Power constrained
design of multiprocessor interconnection networks”, Int’l Conference
of Computer Design, 1997.

[13] L. Peh and V. Sorteiou,”Dynamic Power Management for Power op-
timization of Interconnection Networks Using On/Off Links”, 11th
Symposium of High Power Interconnects, 2003.

[14] L. Shang, L. Peh, N. Jha.”PowerHerd: Dynamic Satisfaction of Peak
Power Constraints in Interconnection Networks”, ICS 2003.

[15] Li Shang, Li-Shuan Peh, and Niraj K. Jha, ”Dynamic Voltage Scaling
with Links for Power Optimization of Interconnection Networks”, In
Proceedings of the 9th Symposium on High-Performance Computer
Architecture, pages79-90, Feb. 2003.

[16] Hang-Sheng Wang, Li-Shiuan Peh, Sharad Malik, “A Power Model for
Routers: Modeling Alpha 21364 and InfiniBand Routers” (2002).

[17] A. G. Wassal and M. A. Hasan, “Low-power system-level design
of VLSI packet switching fabrics”, IEEE Transactions on CAD of
Integrated Circuits and Systems, June 2001.

[18] W. Ye, J. Heideman, and D. Estrin, “An energy-efficient MAC protocol
for wireless sensor networks”, IEEE INFOCOM 2002, New York, NY,
June 23 – 27, 2002.

[19] T. T. Ye, L. Benini, and G. D. Micheli, “Analysis of power consumption
on switch fabrics in network routers”, Proc. DAC 2002, pp. 524–529,
2002.

[20] F. Zane, G. Narlikar, and A. Basu, “CoolCAMs: Power-efficient TCAMs
for forwarding engines”, Proc. IEEE INFOCOM 2003.

[21] James Aweya, IP Router Architectures:An Overview, Journal of Systems
Architecture 46 (2000) pp.483-511, 1999.

[22] Intel 21143 PCI/CardBus 10/100 Ethernet LAN Controller datasheet.
ftp://download.intel.com/design/network/datashts/27807301.pdf

[23] http://www.cisco.com/en/US/products/hw/routers/ps167/
products white paper09186a0080091fdf.shtml

[24] Minkyong Kim, Brian Noble, Mobile Network Estimation, Proc. 7th
annual International Conference on Mobile computing and networking.

11
Proceedings of the 12th IEEE International Conference on Network Protocols (ICNP’04)
1092-1648/04 $ 20.00 IEEE

	footer1:

