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1 Introduction

The development of realistic topology generators is a
problem that has attracted significant attention the
last few years. There exist a number of competing
approaches to construction of random graphs repro-
ducing important properties of real networks. Unfor-
tunately, all the existing approaches do not capture
an inherent aspect of many real networks: links in
real networks represent relationships, which can be
of several types reflecting different properties. Such
link type inhomogeneity is present in the AS topol-
ogy of the Internet, which is a intermix of customer-
to-provider (c2p), peer-to-peer (p2p) and sibling-to-
sibling (s2s) relationships. It also exists in social
networks (different types of social relationships), in
biological networks (different types of protein inter-
actions) and in many other real networks. Node re-
lationships not only provide additional information
on the network topology structure, but more signifi-
cantly, they represent an indispensable aspect of real
networks, and this aspect needs to be properly mod-
eled for many practical applications. Consider for
example the case of using synthetic AS topologies to
simulate a new routing protocol. In order to realisti-
cally simulate routing in a synthetic AS topology, we
need to take into account how policies affect routing
decisions. However, this is not possible with existing
topology generators since they solely model the net-
work connectivity properties without incorporating
any insight about the relationships between nodes.
In this work we address this problem by introduc-
ing a framework for modeling different relationships
found in real networks. We use our framework to
model AS relationships in the Internet and to de-
velop an AS topology generator that generates AS
graphs with realistic connectivity properties as well
as realistic AS relationships.
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2 Modeling AS relationships

To represent different types of relationships we use
a graph G with edges labeled with one of T' possi-
ble colors ¢j, 1 < j < T. Colors reflect edges with
different relationships or, more generally, properties.
For example, the c2p, p2p and s2s relationships of an
AS graph can be represented with three different col-
ors. Each edge in the graph G is either undirected or
directed. An edge is undirected when its color repre-
sents a symmetric relationship like p2p, whereas it is
directed when its color represents an asymmetric re-
lationship like ¢2p. Thus, the graph G can effectively
represent networks with different types of symmet-
ric or asymmetric node relationships. We call such
graphs annotated graphs and introduce the following
definitions: 1) the c}"-degree of a vertex is the num-
ber of adjacent undirected edges with color c;,. 2)
the c?;—degree (cggt—degree) of a vertex is the number
of adjacent in-edges (out-edges) with color ¢, (¢j,).
We collectively denote these degrees as cj-degrees.

Most of the current state-of-the-art topology gen-
erators attempt to reproduce the degree distribution
of the modeled network. The degree distribution
captures only the diversity of degrees in a graph.
For our topology generator, we choose to reproduce
the following properties: 1) The degree distribution.
2) The cj-degree distributions, which are a natural
generalization of the degree distribution. 3) The cor-
relations between different c;‘»—degrees. To illustrate
the significance of the c¢}-degree correlations consider
the following example: it is well-known that large
tier-1 ASes have a large number of customers, i.e.,
large customer-degree, and no providers, i.e., zero
provider-degree. We capture such patterns by re-
producing the c}f-degree correlations. These three
properties are collectively captured by the joint dis-
tribution (JD) of the cj-degrees.

We model the JD of an AS topology using cop-
ulas [3]. A copula is a statistical tool that mod-



els the dependence structure of a joint distribution
and separates this structure from the marginal dis-
tributions. In our case, the dependence structure of
JD is the correlations between different c;f—degrees,
whereas the marginal distributions of JD are the Ci-
degree distributions. To find the appropriate cop-
ula and marginal distributions we collect eight AS
topologies from RouteViews in six month intervals
between 01/18/2002 and 07/18/2005. We infer c¢2p
and p2p relationships using the heuristics in [2, 1].
We represent ¢2p and p2p relationships using two
colors. Moreover, c2p edges are directed and p2p
edges undirected, which yields three c;—degreesz the
customer-, provider-, and peer-degrees of an AS. Us-
ing the collected topologies we first construct an em-
pirical copula that effectively captures the exact cor-
relations we observed in our data. Then, we fit the
customer-degree distribution using the probability
weighted moments method with a generalized Pareto
distribution (GPD). Similarly, we fit the peer-degree
distribution with a pair of GPDs, one for the body
and one for the tail of the distribution. We find that
the provider-degree distribution has almost invariant
quantiles at the first six points of the distribution,
i.e., zero to five providers, but we were not able to
fit the tail of the distribution.

Finally, we construct a random graph with a given
number of vertices N using the following process:
1) We first use the models of the previous paragraph
to generate the numbers of expected customer, peer
and provider adjacencies for each of the N vertices.
2) Then, for each vertex and for each expected ad-
jacency we introduce an colored stub, which is undi-
rected for peer adjacencies, in-directed for customer
adjacencies and out-directed for provider adjacen-
cies. 3) Finally, we conduct a random matching be-
tween stubs of the same color and of compatible di-
rections to get the final graph. If we cannot find a
match for a stub, which may happen if the sum of
in-degrees is not equal to the sum of out-degrees, we
ignore it.

3 Evaluation

We use our method to generate a set of synthetic AS
topologies with c2p and p2p relationships. Then, we
compare the customer-, provider- and peer-degree
distributions of the synthetic topologies with the cor-
responding distributions of real AS topologies an-
notated with inferred AS relationships. We find
that our topology generator accurately reproduces
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Figure 1: Customer-, peer- and provider-degree distribu-
tions of a real graph and of a synthetic graph of the same
size.

the observed customer-, provider- and peer-degree
distributions. We also compare the JDs of the
synthetic topologies with the corresponding JDs of
the real topologies and verify that our synthetic
topologies preserve the observed correlations be-
tween customer-, provider- and peer-degrees. To
illustrate a part of our experiments, in Figure 1
we plot the complimentary cumulative distribution
function (CCDF) of the customer-, provider- and
peer-degrees. The empty points show the distribu-
tions observed in a real AS topology collected on
07/18/2005, whereas the solid points depict the same
distributions in a synthetic topology of the same size.
The close match between the true and the generated
distributions demonstrates the effectiveness of our
approach.

4 Conclusions

In this work we address the problem of generating
synthetic graphs with realistic node relationships.
We introduce a framework for modeling node rela-
tionships observed in real networks and for synthetic
reproduction of important properties associated with
these relationships. We focus on modeling the AS
relationships in the Internet and demonstrate first
results of our topology generator that accurately re-
produces ¢2p and p2p relationships.
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